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Abstract 

Three‑dimensional (3D) bioprinting fabricates 3D functional tissues/organs by accurately depositing the bioink com‑
posed of the biological materials and living cells. Even though 3D bioprinting techniques have experienced signifi‑
cant advancement over the past decades, it remains challenging for 3D bioprinting to artificially fabricate functional 
tissues/organs with high post‑printing cell viability and functionality since cells endure various types of stress during 
the bioprinting process. Generally, cell viability which is affected by several factors including the stress and the envi‑
ronmental factors, such as pH and temperature, is mainly determined by the magnitude and duration of the stress 
imposed on the cells with poorer cell viability under a higher stress and a longer duration condition. The maintenance 
of high cell viability especially for those vulnerable cells, such as stem cells which are more sensitive to multiple 
stresses, is a key initial step to ensure the functionality of the artificial tissues/organs. In addition, maintaining the 
pluripotency of the cells such as proliferation and differentiation abilities is also essential for the 3D‑bioprinted tissues/
organs to be similar to native tissues/organs. This review discusses various pathways triggering cell damage and the 
major factors affecting cell viability during different bioprinting processes, summarizes the studies on cell viabilities 
and functionalities in different bioprinting processes, and presents several potential approaches to protect cells from 
injuries to ensure high cell viability and functionality.
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Background
The demand for the transplantation of organs is consist-
ently increasing due to the severe organ failure problem 
and shortage of suitable donors [1, 2]. Three-dimensional 
(3D) bioprinting which fabricates 3D functional tis-
sues/organs (e.g., human skin [3]) by precisely position-
ing the bioink containing biological materials and living 
cells in a layer-by-layer manner has shown great prom-
ises for tissue engineering [4, 5]. Generally, depend-
ent on the printing mechanisms, 3D bioprinting can be 
classified into four typical types, including inkjet-based 

bioprinting, extrusion-based bioprinting, laser-assisted 
bioprinting, and stereolithography-based bioprinting [6, 
7]. The schematic diagram of each bioprinting technique 
is representatively shown in Fig.  1 [8–11]. Inkjet-based 
bioprinting usually relies on thermal expansion- or piezo-
electric actuation-induced pressure to eject the cell-laden 
droplets out of the nozzle [12, 13]. Inkjet-based bioprint-
ing has good controllability on the size and deposition 
of the cell-laden droplets during printing [14]. However, 
due to its limited nozzle size, bioink with high concen-
trations/viscosities can hardly be ejected out of the inkjet 
nozzle [15, 16]. As another type of nozzle-based bio-
printing technique, extrusion-based bioprinting system 
can be driven by either a pneumatic pressure-, piston-, 
or solenoid-based system to dispense cell-laden bioink 
[17]. Extrusion-based bioprinting is favored for its ability 
to print bioink with high concentrations and viscosities 
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despite its relatively poor printing resolution and low cell 
viability. On the basis of laser-induced forward transfer 
(LIFT) technique, laser-assisted bioprinting relies on the 
pressure bubble generated by the laser pulse to eject the 
suspended bioink [18]. Benefiting from its nozzle-free 
mechanism, laser-assisted bioprinting is leveraged to 
eliminate the challenges in nozzle-based bioprinting sys-
tems. It is not limited by the concentrations/viscosities of 
the bioink and is capable to form 3D constructs with high 
precision and cell viability. However, its further applica-
tions are restricted by its high cost and time-consuming 
process [19, 20]. Stereolithography-based bioprinting 
usually relies on ultraviolet (UV) light or visible light to 
crosslink photocrosslinkable materials in a layer-by-layer 
manner until the completion of the 3D complex struc-
tures [21, 22]. Stereolithography-based bioprinting can 
be further divided into two categories: conventional ste-
reolithography where a light source is controlled with a 
point-by-point movement on each layer, and digital light 
processing (DLP) where a projector is used to project 
the light source onto each layer of photocrosslinkable 

materials [23]. Stereolithography-based bioprinting is 
capable to fabricate 3D constructs with complex geom-
etries with high printing resolution, but the overall print-
ing time is sometimes longer than other techniques due 
to its crosslinking mechanism, and the currently limited 
choices of materials possessing both biocompatibility and 
photocrosslinkable properties restrict its broader appli-
cations [24, 25].

3D bioprinting has a rigid requirement on the selection 
of materials [26]. Bioink, as a key element for 3D bioprint-
ing, is a mixture of biological materials and the desired 
cell types [27]. Suitable biological materials should hold 
the attributes such as good biocompatibility and bio-
degradability, easy crosslinking mechanism, and robust 
mechanical properties, to name a few [28, 29]. Among 
all the materials, water-soluble polymers also known as 
hydrogels are currently found to be the most suitable 
biological materials for the bioink due to their similari-
ties to natural extracellular matrix (ECM) enabling the 
adhesion, proliferation, and differentiation of the encap-
sulated living cells [30]. Generally, the commonly used 

Fig. 1 Schematic diagram of bioprinting technique. a Inkjet‑based bioprinting. Reprinted with permission from Reference [8]. Copyright 2019, the 
American Institute of Physics. b Extrusion‑based bioprinting. Na‑Alg sodium alginate. Reprinted with permission from Reference [9]. Copyright 2017, 
ACS. c Laser‑assisted bioprinting. Reprinted with permission from Reference [10]. Copyright 2018, Elsevier. d Stereolithography‑based bioprinting. 
Reprinted with permission from Reference [11]. Copyright 2020, Elsevier
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hydrogels for 3D bioprinting can be classified into two 
typical categories including natural hydrogels (such as 
collagen [31], silk [32], alginate [33], and fibrin [34]) and 
synthetic hydrogels [such as polyethylene glycol (PEG) 
[35] and polyvinyl alcohol (PVA) [36]]. Even though natu-
ral hydrogels are proven to be more biocompatible com-
pared to synthetic hydrogels, synthetic hydrogels can 
provide tunable mechanical and physical properties [37]. 
As the other key component of the bioink, various types 
of cells including primary cells, cell lines, and stem cells 
have been incorporated for 3D bioprinting. Primary cells 
refer to the cells which are directly isolated from tissues/
organs, cell lines refer to the culture of cells originating 
from a primary cell culture, and stem cells hold the abil-
ity to develop into different cell types under guidance. 
For example, stem cells [such as mesenchymal stem cells 
(MSCs) [38] and embryonic stem cells (ESCs) [39]] and 
primary cells [such as human umbilical vein endothelial 
cells (HUVECs) [40] and 3T3 mouse fibroblasts [41, 42]] 
have been used as the model cells, mixed within the pre-
pared hydrogel solution, and incorporated in various 3D 
bioprinting applications. With the advances in material 
science and broader choices for biological materials, 3D 
constructs such as vessel-like constructs [43], cartilage 
[44], bone [45], and skin [46] have been fabricated using 
various bioprinting techniques.

Recently, the continuous advancements in 3D bioprint-
ing techniques and broader choices of suitable biological 
materials have enabled the rapid and precise biofabrica-
tion of 3D artificial tissues/organs such as skin [47] and 
bone [48]. As a rapidly developing technology, 3D bio-
printing which has the potential to fabricate 3D native-
like constructs with complex geometries has shown great 
promises for solving the severe organ failure problem and 
replacing the malfunctioned tissues/organs [49]. There 
are frequent injuries in the combat zone and the result-
ant blood vessel damage increases the probability of mor-
tality [50]. Specifically, the muscle loss due to trauma is 
frequently observed on the battlefield, and it is extremely 
difficult for soldiers with injuries to receive immedi-
ate treatment such as surgery due to the harsh envi-
ronment in the combat zone. The recovery of soldiers’ 
wounds and injuries remains challenging. Therefore, it 
remains critical to find an optimal solution to promptly 
and properly treat the wound in the remote combat zone 
[51]. The advance of 3D bioprinting provides a promis-
ing solution for promptly healing wounds caused on 
the battlefield [52]. For example, 3D bioprinting such as 
inkjet-based bioprinting can be chosen as an effective 
tool for the treatment of frequent traumas such as skin/
bone injuries and blood vessel damage on the battlefield 
[53]. These 3D-bioprinted skins/bones are customizable 
and transplantable to the injured soldiers. 3D-bioprinted 

vessel-like constructs such as vascular grafts will be help-
ful for promptly and temporarily treating blood ves-
sel damage severe bleeding on the battlefield before the 
patients are transferred for formal physical surgery [54]. 
In addition, 3D-bioprinted constructs which mimic 
native tissues/organs can be applied to other areas such 
as drug discovery and investigation of blast injuries. To 
conclude, with the continuous advancements in 3D bio-
printing techniques and broader choices of materials, 3D 
bioprinting has a great potential to get involved in mili-
tary-related fields for better healing combat-related inju-
ries [55].

Even though 3D bioprinting techniques have experi-
enced significant improvements during the past decade, 
maintaining high cell viability and functionality after the 
bioprinting processes remains challenging [56]. All these 
four 3D bioprinting techniques were found to adversely 
affect cell viability due to the stresses during the bioprint-
ing process [57]. In addition, cell viability may further 
decrease while being cultured within a nutrition-deficient 
environment [58]. Generally, stresses generated during 
the bioprinting processes affect cell viability and func-
tionality by influencing cell signaling and protein expres-
sion [59]. To reduce the percentage of cell death and 
ensure post-printing cell functionality, the overall stress 
must be carefully controlled. In brief, the stress imposed 
on the cells is either due to the shear stress generated 
from the imposed pressure and nozzle size during the 
nozzle-based bioprinting process [60, 61], or the thermal 
and radiative stress generated by the light sources during 
light-based printing processes [62]. For example, during 
extrusion-based bioprinting, the stress mainly comes 
from the shear stress, and the magnitude of the overall 
shear stress is determined by several parameters includ-
ing the nozzle size, pressure, printing speed, and viscosity 
of the bioink [63]. The detailed information on the fac-
tors affecting cell viability during each type of bioprinting 
technique will be covered in the following sections.

This review discusses the factors resulting in cell dam-
age during each type of bioprinting, and summarizes sev-
eral typical studies on cell viability and functionality after 
different bioprinting processes. The aim of this review 
is to gain a better understanding of each type of 3D bio-
printing by summarizing the mechanism of cell damage 
and explore possible ways to maintain high cell viability 
and functionality after the printing processes and thus 
achieve better printing performance.

Cell damage during 3D bioprinting
Due to the complicated cellular behaviors, living cells are 
more complicated than other normal engineered materi-
als (e.g., nano-particles) [64]. Therefore, it is necessary to 
understand the relationship between biological damage 
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pathways and cell damage to manage the unwanted cell 
viability loss. During the bioprinting processes, cell injury 
may source from various inducements/stimuli such as 
shear stress, thermal stress, and radiative stress. The per-
centage of cell injury is dependent on the strength and 
duration of the stimuli. If the imposed stresses exceed 
the loading capacity of a single cell, irreversible cell dam-
age will happen, resulting in unexpected cell death such 
as cell apoptosis. Due to the unique mechanism of each 
bioprinting technique, the factors affecting cell viability 
vary from each other. Briefly, during nozzle-based bio-
printing such as inkjet-based bioprinting and extrusion-
based bioprinting, cells are mainly experiencing shear 
stress during the ejection process [65], while during 
light-involved bioprinting such as laser-assist bioprint-
ing and stereolithography-based bioprinting, cells mainly 
endure the thermal and radiative stress induced by dif-
ferent wavelengths of lights and the shear stress [66]. In 
addition to the shear stress, several other environmental 
factors such as temperature and pH may also affect cell 
viability. For example, temperature is able to affect the 
rheological properties and gelation of the bioink and thus 
affect cell viability [67], and pH is able to affect the hydro-
gel properties such as the pore size [68] and thus affect 
cell viability [69]. It is of great significance to understand 
the cell injury sources and model the cell viability during 
the bioprinting process. In this section, the main trig-
gered pathways indicating cell damage/death, the typical 
factors affecting cell viability in each type of 3D bioprint-
ing technique, and several representative modellings to 
predict cell damage and cell viability will be discussed 
and summarized.

Cell damage pathways
Cell death is generally classified into apoptosis and 
necrosis [70]. Apoptosis, reflecting the fate of cells, refers 
to the malfunctions of the cells coming from stresses, and 
necrosis, representing the accidental cell death, is mainly 
caused by uncontrolled events [71, 72]. During 3D bio-
printing, cell deaths and injuries mainly come from the 
stresses imposed on the living cells. There are several 
phenotypes of cell apoptosis including cell shrinkage and 
condensation of nuclei, to name a few [73]. Due to the 
complexity of factors triggering cell damage, it is neces-
sary to study cell damage/death based on the molecular 
signaling pathways [74]. It is noted cell damage mainly 
comes from light irradiation stress during light-based 
bioprinting and shear stress during nozzle-based bio-
printing [75, 76]. During light-based bioprinting such 
as stereolithography-based bioprinting, cell apoptosis 
induced by UV exposure is mediated through the acti-
vation of c-Jun NH2-terminal kinase/stress-activated 
protein kinase (JNK/SAPK) [77]. Shear stress applied 

to the cells will be firstly transformed into a biological 
signal subsequently inducing the activation of effector 
caspases [73]. The apoptosis of cells is usually triggered 
either through intrinsic pathway, extrinsic pathway, or 
both pathways [78, 79]. The intrinsic pathway refers to 
stress-induced caspase activation of BH3 protein and the 
subsequent activation of caspase 3 responding to intra-
cellular stresses such as DNA damage, while the extrinsic 
pathway refers to receptor-mediated caspase activation 
of caspase 8 and the subsequent activation of caspase 3 
responding to extracellular death receptors [80]. From 
both pathways, it is obvious that caspase 3 which is the 
most common type of caspase plays an important role 
in shear stress-induced cell apoptosis [81]. Before being 
activated, caspases exist inactively as a form of pro-cas-
pases in normal cells. The activation of caspases dem-
onstrates the stresses imposed on the cells have already 
exceeded the threshold and the cells are experiencing 
cell apoptosis [82]. Previous work has also reported that 
there is a time lag for caspase 3-initiated cell apoptosis 
under external loadings. However, this time lag is short-
ened with the increase in the magnitude of the stress 
[79], and cells are more likely to be quickly injured under 
high shear stress condition. In addition to the effect of 
the shear stress’s magnitude on cell damage, the duration 
of shear stress imposed on the cells also matters, indicat-
ing an accumulative effect of shear stress on cell damage 
[83].

Cell damage in inkjet‑based bioprinting
Inkjet-based bioprinting has been widely utilized for 
numerous tissue engineering applications due to its high 
printing resolution and relatively high cell viability [84]. 
During inkjet-based bioprinting, bioink with low viscos-
ity is usually selected to ensure smooth jetting and avoid 
nozzle clogging due to the limited nozzle size [85]. Most 
inkjet-based bioprinting systems employ either thermal 
or mechanical compression to generate pressure pulses 
for droplet ejection [86]. Therefore, inkjet-based bio-
printing can be mainly classified into thermal and piezo-
electric inkjet-based bioprinting [87] with both methods 
relying on the generation of necessary pressure for drop-
let ejection [88]. Generally, cells are mainly enduring 
the shear stress and thermal stress if applicable during 
inkjet-based bioprinting. The shear stress during inkjet-
based bioprinting mainly comes from two parts includ-
ing the ejection and landing of the cell-laden droplets. 
The magnitude of the shear stress which is calculated by 
multiplying the viscosity of the bioink by the shear rate 
is dependent on both the process parameters (e.g., the 
nozzle size and amplitude of the imposed actuation volt-
age waveform) [89] and the bioink properties (e.g., the 
viscosity of the bioink) [90]. It has been found that the 
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shear stress imposed on the cells when landing on the 
substrate is even higher than that generated during the 
ejection process out of the inkjet nozzle [91]. A smaller 
droplet impact velocity has been found to significantly 
improve the cell viability [92, 93], while a higher droplet 
impact velocity generally results in more intensive degree 
of deformation of the cell membrane and more cell dam-
age [94]. In addition, the evaporation of the formed drop-
lets has been reported to negatively affect cell viability 
[95]. The shear stress which originates from the rheologi-
cal properties of the bioink can be maximally prohibited 
by selecting the biological material with shear-thinning 
property, thus reducing cell damage [96]. The thermal 
stress mainly derives from the thermal inkjet-based bio-
printing process. When the nozzle is heated more than 
37  °C, cell damage is correspondingly enhanced. Over-
all, shear stress-induced cell damage usually comes from 
the deformation and the enlargement of cell membrane 
[97]. As reported, when the increase in the size of the cell 
membrane exceeds 5%, cell membrane cannot maintain 
the intact shape and becomes stretched to rupture result-
ing in cell death [98]. Enduring from the shear stresses 
[99], cell viability is generally decreased [100] and the 
mis-functionality of the living cells is found [101]. Bioink 
should be carefully selected for suitable properties, and 
the operating conditions should be optimized to maxi-
mally maintain cell viability [102].

Cell damage in extrusion‑based bioprinting
Extrusion-based bioprinting has been widely involved 
in various tissue engineering applications due to its easy 
implementation, low cost, and allowance on bioink’s vis-
cosities and concentrations [103–105]. During extrusion-
based bioprinting, due to the selected bioink with high 
viscosity for better printability and support, a great per-
centage of cells endures the printing-induced cell stresses 
and gets injured/killed, resulting in relatively low cell 
viability compared to other printing techniques [60, 106]. 
In addition, a mechanical-driven (e.g., screw-driven) 
dispensing system generates a higher pressure when 
bioprinting the bioink with high viscosity and simulta-
neously kills more cells [107]. The relationship between 
shear stress and various printing parameters such as 
nozzle size and viscosity of the bioink and the effects of 
various printing parameters on cell viability have been 
comprehensively studied. Generally, the shear stress 
mainly comes from the printing process and the materi-
als. From the process’s perspective, when the bioink con-
taining the living cells is extruded out of a needle, the size 
of the nozzle and the operating pressure directly deter-
mine the strength of the generated shear stress [102]. It is 
noted that the major cause of cell damage lies in the shear 
stress generated during the extrusion out of the needle 

[76], and dispensing pressure has a more significant effect 
compared to the size of the nozzle [108]. Briefly, the 
increase in dispensing pressure and the decrease in noz-
zle size generally lead to the increase of shear stress and 
thus decrease cell viability [106]. In addition, the extru-
sion speed also affects the shear stress and thus further 
affects cell viability [109]. From the materials’ perspec-
tive, bioink with higher viscosity generally generates a 
higher shear stress on the cells resulting in more severe 
cell damage. To overcome this issue, similar to inkjet-
based bioprinting, bioink with shear-thinning properties 
is preferred to maximally decrease the imposed shear 
stress on the cells and thus increase cell viability during 
the printing process [110]. The shear stresses coming 
from the printing process and the materials have joined 
together to generate a large shear stress on the living 
cells, leading to the rupture of the cell membrane and a 
subsequent cell damage/death in extrusion-based bio-
printing process [111]. To maintain cell viability after the 
bioprinting process, the biological materials within the 
bioink should be carefully chosen, and the operating con-
ditions should be optimized [102].

Cell damage in laser‑assisted bioprinting
Laser-assisted bioprinting, on the basis of LIFT, has 
drawn more attention due to its superior advantages such 
as high printing resolution, high cell viability, and capa-
bility to print the bioink with high viscosity with little 
concerns of nozzle clogging [112]. There are two major 
types of stress, including the shear stress generated dur-
ing the jetting process and that from the materials and 
the thermal and radiative stresses imposed on the living 
cells by laser exposure during laser-assisted bioprinting, 
among which cell injury due to the shear stress generated 
during the printing process has been proved to be more 
severe [113, 114]. The shear stress in laser-assisted bio-
printing process mainly comes from two parts, including 
that generated by the ejection and landing process of the 
cell-laden droplets and that from the materials. The mag-
nitude of the shear stress which is calculated by multiply-
ing the viscosity of the bioink by the shear rate depends 
on both the process parameters (e.g., the speed of the jet 
due to bubble expansion for droplet formation) and the 
bioink properties (e.g., the viscosity of the bioink) [115]. 
When there is a rapid acceleration (jetting) or decelera-
tion (landing) during the jetting process [116], huge shear 
stress will be imposed on the cells, causing cell injury by 
damaging the membrane [117] and breaking DNA dou-
ble-strand [118]. The thermal and radiative stress is due 
to the exposure of a laser such as UV laser at one spot 
where UV laser may inactivate the enzymes, denature 
the proteins, and damage the DNA double-strand [119], 
and higher laser intensity may damage more cells [72]. 
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For example, yeast cells have been proven to be easily 
injured when exposed to laser lights [120]. Similar to the 
shear stress in inkjet-based bioprinting and extrusion-
based bioprinting, bioink with higher concentration/
viscosity generally generates more stress on the cells and 
further reduces cell viability, and that is why hydrogels 
with shear-thinning properties are preferred. Despite 
the shear stress generated over each step, previous stud-
ies have demonstrated the relatively cell-friendly print-
ing mechanism of laser-assisted bioprinting technique by 
investigating post-printing stem cells’ functionality and 
DNA [121, 122].

Cell damage in stereolithography‑based bioprinting
Based on the curing mechanism, stereolithography-
based biopprinting can be further divided into two types, 
including conventional stereolithography where a laser 
beam is exposed to solidify the photocrosslinkable mate-
rials with a point-by-point movement, and DLP, in which 
a digital micromirror device (DMD) is in place of a physi-
cal mask curing the whole 2D pattern upon one-time 
exposure [123]. Holding the advantages of high print-
ing resolution and cell viability, stereolithography-based 
bioprinting has been employed in the fabrication of 3D 
functional tissues/organs using photocrosslinkable mate-
rials over the past few years [124]. When photocrosslink-
able materials are selected for bioprinting, the presence 
of a suitable type of photoinitiator is needed to initiate 
the crosslinking process and solidify the photocrosslink-
able materials under UV/visible light exposure [69]. 
Under UV/visible light exposure, free radicals released 
by the photoinitiator polymerize the photocrosslinkable 
materials [125], and different types of photoinitiators 
have been found to be sensitive to different light wave-
lengths [126]. Due to its nozzle-free mechanism, unlike 
inkjet-based bioprinting or extrusion-based bioprinting, 
there is almost no shear stress imposed on the living cells 
during the printing process, and the main cell damage 
comes from the radiative stress from the light source and 
the cytotoxicity of the photoinitiator. The thermal and 
radiative stress are dependent on the light source. For 
example, when ultraviolet radiation A (UVA) with a typi-
cal wavelength of 320–400 nm is selected, cells’ nuclear 
DNA may be damaged which will further contribute to 
genomic mutations [127]; when ultraviolet radiation 
B (UVB) with a typical wavelength of 290–320  nm is 
selected, cell apoptosis can be induced by activating the 
death receptor CD95 [128]; and when visible light such as 
blue light with a typical wavelength of 405 nm is selected, 
its effect on cell damage will not be as severe as the two 
types of UV light [129]. In addition, for stable crosslink-
ing to address the problem of oxygen inhibition, longer 
UV exposure or higher UV intensity is neccessary [130], 

which further reduces cell viability [131]. The cytotoxic-
ity of the photoinitiator before crosslinking is another key 
factor reducing cell viability through contacting the living 
cells. However, after the light exposure, the photoinitia-
tor has been decomposed, losing the ability to continu-
ously affect cell viability during the post-printing process. 
As reported by several researchers, even the commonly 
used photoinitiators such as Irgacure 2959 and lithium 
phenyl-2,4,6-trimethyl-benzoyl phosphinate (LAP) 
before crosslinking are found to keep decreasing pre-
printing cell viability by contacting with the living cells, 
especially after long printing time [132]. For example, 
0.7% (w/v) Irgacure 2959 has been reported to decrease 
the cell viability from 80 to 25% to 6% as the printing time 
increased from 30 to 45 to 60 min. In addition, LAP was 
found to be a more biocompatible photoinitiator com-
pared to Irgacure 2959 especially at higher concentra-
tions. For example, the cell viability measured at 1-hour 
printing time was 53% for 0.9% (w/v) LAP, while this 
value was reduced to almost zero for Irgacure 2959 at the 
same concentration [133]. These stresses including the 
radiative stress coming from the light sources, and the 
cytotoxicity of the photoinitiator should also be consid-
ered when photocrosslinkable materials such as gelatin 
methacrylate (GelMA) are selected during other 3D bio-
printing techniques such as extrusion-based bioprinting 
or in a hybrid bioprinting system [62].

Cell damage modelling
As aforementioned in the above sections, for nozzle-based 
bioprinting such as inkjet-based bioprinting and extru-
sion-based bioprinting, cell injury is mainly due to the 
stress generated during the ejection and landing process. 
One simple model is the direct correlation of cell damage 
percentage with shear stress using a power-law function: 
CD% = kτa , where k and a are power-law coefficients, τ 
represents shear stress, and CD% represents the percent-
age of damaged cells [134]. A more accurate model consid-
ering the effect of shear stress exposure time on cell 
damage was derived as follows: CD% = k(τ − τ0)

atb , 
where t represents the exposure time and b is another 
power-law coefficient [135]. During the printing process, 
the cell membrane may become deformed or ruptured due 
to the stress imposed on the living cells, and for this  
reason, some researchers quantified cell viability by mod-
elling the deformation of the cell membrane or checking 
the permeability of cell [12, 91]. For example, the cell 
membrane deformation can be approximately estimated 

using the formula: M = C0M0e
−0.26D0/Dc

µc
µ0

−0.56

 , where 
M represents cell deformation, M0 is a value between 0 
and 1, D0 represents the droplet’s diameter, µ0 represents 
the viscosity, and C0 represents a fitting parameter set at 5 
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[136]. It was also reported that cell membrane remained 
intact with extension of the membrane area up to 5% and 
cell rupture can be observed for larger expansion [98]. 
Therefore, cell viability can be estimated by studying cell 
membrane deformation. There have been several studies 
focusing on cell damage during extrusion-based bioprint-
ing. For example, Nair et al. [108] derived an in vitro quan-
titative model to analyze cell injury caused by the 
process-induced mechanical disturbances while being 
ejected out of a micro-scale nozzle during extrusion-based 
bioprinting. Two typical processing parameters including 
the imposed pressure and nozzle diameter were controlled 
to obtain cell viability data under different experimental 
conditions. The collected data were subsequently analyzed 
to derive the formulation, and the final quantitative model 
showing the percentage of alive cells can be expressed as: 
E(PL) = 0.8563+ 0.655x1 − 0.286x2 + 0.0061x1x2−

0.76x
2
1
+ 0.000352x

2
2
 , where E(PL) represents the expected 

value of the percentage of the living cells, and x1 and x2 
represent nozzle diameter and pressure, respectively. In 
another study presented by Blaeser et  al. [65], using  
a straightforward fluid-dynamics model, the intrinsic  
shear stress could be estimated using the formula: 
∂w
∂t = 1

ρs

(

p+ ρgh− 1
2ρw

2 − 4
d
wnK

[

2( 1n+3)

d

]n)

 , where K 

and n are power-law coefficients representing the rheolog-
ical properties of the polymer solution, d represents the 
diameter of the nozzle, s represents the length of the noz-
zle, and w represents the average drop speed. Therefore, 
the shear stress imposed on the living cells can be numeri-
cally solved and its induced cell injury can be estimated. 
For example, it was found the average cell viability of L929 
mouse fibroblasts decreased from 96 to 91% to 76% when 
the nozzle shear stress was increased from less than 5 kPa 
to between 5 and 10 kPa to more than 10 kPa.

For nozzle-free based bioprinting such as laser-assisted 
bioprinting and stereolithography-based bioprinting, 
cells are also enduring the thermal and radiative stress 
due to the exposure of laser/UV light. Several mathe-
matical models including power-law [137] and Gompertz 
[138] have been presented to model cell injuries during 
the laser-assisted bioprinting process. For example, a 
typical power-law model was developed to predict cell 
death during laser-assisted bioprinting where cell death 
in percentage can be characterized using the formula: 
I = k1 × Lk2 × Ak3 , where I represents the predicted 
cell death, L represents the laser fluence in mJ·cm−2, A 
represents the polymer concentration, and k1, k2 and 
k3 represent coefficients of power-law [72]. Alterna-
tively, the Gompertz cell death model was defined as: 
I = exp[−k4exp(−k5L− k6A)]× 100 , where k4, k5 and 
k6 represent Gompertz constants. In addition, it has been 

widely reported that cell injury during stereolithography-
based bioprinting is mainly caused by UV irradiation 
[75]. During the printing process, UV irradiation-induced 
cell apoptosis is led by the activation of JNK/SAPK on 
the cell membrane. Unlike the modelling of cell mem-
brane rupture that predicts cell viability, this activation of 
protein on the membrane suggests that the apoptosis of 
cells increases the difficulty to predict cell viability [77]. 
Recently, Xu et  al. [75] presented an innovative predic-
tive modeling approach based on an ensemble learning 
algorithm combining ridge regression (RR), k-nearest 
neighbors (KNN), random forest (RF) and neural net-
work (NN). This data-driven approach has been proven 
to be capable of accurately predicting cell viability under 
various experimental conditions during dynamic optical 
projection-based stereolithography. Moreover, the signif-
icance of several process parameters including UV inten-
sity, UV exposure time, polymer concentration and layer 
thickness on cell viability were evaluated and compared.

Cell viability during 3D bioprinting
As aforementioned, living cells are subjected to different 
sources and magnitudes of stresses resulting in different 
cell viability during different bioprinting processes. For 
example, the cells mainly endure strong shear stress dur-
ing microextrusion-based bioprinting, resulting in loss of 
cell viability to various extend. Maintaining high cell via-
bility is an essential key step for retaining suitable cellular 
behaviors, such as the proliferation and differentiation 
ability, thereby ensuring the 3D-bioprinted constructs are 
biologically similar to native tissues/organs. In this sec-
tion, the typical cell viability range of each bioprinting 
technique will be discussed. Several typical applications 
and the associated cell viabilities using different types of 
bioprinting techniques are summarized in Table 1 [9, 21, 
44, 72, 86, 124, 139–148].

Cell viability in inkjet‑based bioprinting
Cell viability during inkjet-based bioprinting is mainly 
affected by the shear stress and thermal stress if applica-
ble. During printing, due to the limited nozzle size, bioink 
with low viscosity and concentration is selected to avoid 
nozzle clogging and ensure continuous jetting which at 
the same time reduces the shear stress and protects cells 
from significant injuries. It is noted that bioink with a 
typical viscosity range from 3 to 30 mPa·s is suitable for 
inkjet-based bioprinting [88] and a typical cell viability 
range of more than 85% can be obtained [149]. Inkjet-
based bioprinting has been favored for various biomedi-
cal applications due to its relatively high cell viability and 
deposition accuracy. For example, Xu et al. [139] selected 
inkjet-based bioprinting to successfully fabricate zigzag 
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tubes with 3T3 fibroblasts encapsulated. Cell viability 
was maintained at over 82% (or 93% considering the con-
trol effect) after 72-hour incubation. Vascular-like con-
structs were fabricated by inkjet printing of the bioink 
composed of sodium alginate and 3T3 fibroblasts cells 
[140]. More than 90% of the cells were observed to be 
alive after 24-hour incubation. Gao et al. [141] used mod-
ified inkjet printers to co-print PEG- and peptide-based 
scaffold and human mesenchymal stem cells (hMSCs) to 
form native bone- and cartilage-like structures. The cell 
viability measured 24  h after printing was around 88%. 
Cui et  al. [86] presented an innovational approach to 
fabricate cartilage-like tissues by simultaneously polym-
erizing poly(ethylene glycol) dimethacrylate (PEGDMA) 
during printing, and the cell viability of human chondro-
cytes was improved by 26% to around 89%.

Cell viability in extrusion‑based bioprinting
Similar to inkjet-based bioprinting, extrusion-based bio-
printing is also a nozzle-based bioprinting technique and 
its cell viability is mainly determined by the shear stress 
and thermal and radiative stresses if photocrosslinkable 
materials are selected. However, due to its larger noz-
zle size, bioink with a viscosity range from 30 to 6 ×  108 
mPa·s can be extruded out of the extrusion nozzle to 
form filaments and form the 3D constructs as designed 
with a layer-by-layer approach [150]. The increase in the 
bioink concentration and viscosity unavoidably increase 
the shear stress and kill more cells. Because of the high 

stresses imposed on the living cells during the bio-fab-
rication process, extrusion-based bioprinting typically 
provides a low cell viability ranging from 40 to 80%. How-
ever, better printing performance with higher cell viabil-
ity can also be achieved by optimizing the experimental 
design and operation conditions [151]. Extrusion-based 
bioprinting has been widely used in various biomedical 
applications due to its low cost, easy implementation, 
and large allowance for bioink concentration and vis-
cosity. For example, Ávila et  al. [44] selected extrusion-
based bioprinting to fabricate auricular constructs with 
the bioink composed of nanofibrillated cellulose, alginate 
and human nasal chondrocytes (hNCs). The cell viability 
measured immediately after bioprinting was approxi-
mately 70%. In addition, cells were found to recover 
during 28 d in  vitro culture, resulting in increased cell 
viability. Müller et  al. [142] extruded the bioink com-
posed of alginate sulfate, nanocellulose, and chondro-
cytes out of the nozzle with different air pressure to 
fabricate complex structures such as a miniature ear. Cell 
viabilities under all conditions were maintained at more 
than 85% after 14 d culture and 88% after 28 d culture. 
Hsieh et al. [143] utilized thermoresponsive polyurethane 
solutions associated with neural stem cells (NSCs) to 
create structures that could be transplanted to heal the 
damaged nervous system. Cell viability was measured to 
be greater than 50% at 24 h after printing. Gao et al. [9] 
coaxially bioprinted the bioink composed of alginate and 
fibroblasts and bioink composed of alginate and smooth 

Table 1 Summary of typical cell viability studies

PEGDMA poly(ethylene glycol) dimethacrylate, PEG polyethylene glycol, hMSCs human mesenchymal stem cells, hNCs human nasal chondrocytes, HUVECs human 
umbilical vein endothelial cells, hiPSCs human induced pluripotent stem cells, GelMA gelatin methacrylate, PEGDA polyethylene glycol diacrylate, EY eosin Y, LAP 
lithium phenyl-2,4,6-trimethyl-benzoyl phosphinate, mBMSCs mouse bone marrow mesenchymal stem cells, NSCs neural stem cells, 3D three-dimensional

Method Bioink Application Cell viability References

Inkjet‑based bioprinting PEGDMA, human chondrocytes Cartilage‑like constructs 89% [139]

Sodium alginate, 3T3 fibroblasts Zigzag tubes 82% [140]

Sodium alginate, 3T3 fibroblasts Vascular‑like constructs > 90% after 1 d [141]

PEG/peptide, hMSCs Cartilage‑like constructs 89% [86]

Extrusion‑based bioprinting Nanofibrillated cellulose, alginate, hNCs Aricular constructs 70% [44]

Alginate sulfate, nanocellulose, chondrocytes Miniature ears > 85% at day 14 [142]

Polyurethane solutions and NSCs Nerve‑like constructs > 50% after 1 d [143]

Alginate, fibroblasts, smooth muscle cells Vascular‑like constructs > 91% after 7 d [9]

Laser‑assisted bioprinting Alginate, 3T3 fibroblasts 3D constructs > 90% [144]

HUVECs, biopaper Osseous constructs 92.4% [72]

3T3 fibroblasts 3D constructs > 93.5% [145]

Hyaluronic acid, hiPSCs 3D constructs > 94% with control effect [146]

Stereolithography‑based bioprinting GelMA, PEGDA, EY, 3T3 fibroblasts 3D structure 85% for at least 5 d [21]

GelMA, EY, 3T3 fibroblasts 3D structure 91.5% [124]

GelMA, HUVECs, C3H/10T1/2 cells Prevascularized tissues > 85% [147]

GelMA, LAP, mBMSCs Native‑like tissues 95% [148]
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muscle cells into vascular-like constructs with multiple 
fluid channels. After 7 d of incubation, more than 91% of 
the encapsulated cells survived.

Cell viability in laser‑assisted bioprinting
Unlike inkjet-based bioprinting and extrusion-based bio-
printing, laser-assisted bioprinting relies on a nozzle-free 
mechanism to form cell-laden droplets, which are used 
as the building block for 3D-bioprinted constructs. Cell 
viability during laser-assisted bioprinting is mainly deter-
mined by the shear stress during jetting and landing as 
well as the material properties and thermal and radia-
tive stresses. Benefiting from its nozzle-free mechanism, 
a large range of bioink viscosity up to 300 mPa·s can be 
applicable to laser-assisted bioprinting, and more than 
90% cell viability can be maintained [121, 152]. Because 
of its high cell viability and printing resolution, laser-
assisted bioprinting has been involved in multiple tis-
sue engineering applications. For example, Kawecki 
et  al. [144] chose laser-assisted bioprinting to bioprint 
HUVECs onto the biopapers enabling the fabrication of 
prevascularized cell-based osseous constructs for bone 
repair. The cell viability on osseous and stromal biopa-
per was measured to be 92.4% and 97.4%, respectively. 
Gudapati et al. [72] studied the effects of various process 
parameters such as laser intensity, polymer concentra-
tion, and gelation time on post-printing cell viability 
during laser-assisted bioprinting of 3D constructs. Sur-
prisingly, 2-minute gelation was able to provide higher 
cell viability by forming a gel membrane to better protect 
the encapsulated cells, while 10-minute gelation reduced 
cell viability due to the limitation of nutrient and oxygen 
exchange. More than 90% of the cells can be kept alive 
by optimizing the process parameters. Koch et  al. [145] 
presented a study focusing on the effect of laser-related 
parameters such as laser wavelength and durations on 
cell viability during laser-assisted bioprinting. Cell viabil-
ity remained at least 93.5% at any parameter combina-
tion. Later, the same group investigated the maintenance 
of cellular behaviors such as cell viability, proliferation, 
and pluripotency during laser-assisted bioprinting of the 
bioink containing hyaluronic acid and human induced 
pluripotent stem cells (hiPSCs). Over 94% of the undif-
ferentiated hiPSCs were able to survive the bioprinting 
process and maintain their pluripotency.

Cell viability in stereolithography‑based bioprinting
As a rapidly developing technique, stereolithography-
based bioprinting is also a nozzle-free bioprinting tech-
nique. Cell viability during stereolithography-based 
bioprinting is mainly determined by the thermal and 
radiative stresses. Benefiting from its nozzle-free mech-
anism, high cell viability can usually be achieved [23]. It 

is noted that cell viability can exceed 90% and the print-
ing resolution can reach 10  μm [132, 153]. Therefore, 
stereolithography-based bioprinting has been recently 
favored for the fabrication of artificial tissues/organs 
due to its high printing resolution and cell viability. For 
example, Wang et  al. [21] selected stereolithography-
based bioprinting to construct 3D structures using the 
bioink with a mixture of polyethylene glycol diacrylate 
(PEGDA), GelMA, eosin Y (EY) and 3T3 fibroblast cells. 
It was found that a minimum resolution of 50 μm can be 
achieved and more than 85% cell viability can be main-
tained for at least 5 d. Later, the same group investigated 
the effects of GelMA and EY concentrations on the print-
ing performance (e.g., cell viability) when bioprinting 3D 
constructs [124]. Approximately 91.5% cell viability can 
be achieved by carefully selecting the combination of pol-
ymer and photoinitiator concentrations. Zhu et al. [147] 
presented an effective and efficient approach to fabricate 
prevascularized tissues using stereolithography-based 
bioprinting. The encapsulated HUVECs and C3H/10T1/2 
cells within the crosslinked GelMA-based tissue con-
structs have reached 85% high cell viability. Recently, 
Zhang et al. [148] developed a cost-effective and compact 
stereolithography-based bioprinter to create natural tis-
sue-like constructs using the bioink containing GelMA, 
LAP and mouse bone marrow mesenchymal stem cells 
(mBMSCs). In their study, a high cell survival rate of 95% 
was observed.

Cell functionality during 3D bioprinting
High cell viability is an initial key step in successful bio-
printing of constructs that are geometrically, mechani-
cally and functionally similar to native tissues/organs. 
Maintenance of cell functionality is another major con-
cern of 3D bioprinting to ultimately ensure the function-
ality of the 3D artificial tissues/organs during culture 
[154]. Therefore, researchers should not only focus on 
the retainment of cell viability, but also the maintenance 
of cell functionality such as proliferation and differentia-
tion abilities of the living cells both during the printing 
and culturing processes of the 3D-printed tissue con-
structs [149]. More specifically, surviving cells during 
bioprinting are expected to attach, proliferate, differen-
tiate, and interact with the hydrogels that mimic native 
ECM. When stem cells are selected for bioprinting, they 
are expected to maintain the potency to differentiate into 
different cell types under the specific guidance and per-
form the corresponding gene expressions following the 
bioprinting processes [155]. For example, under specific 
guidance, MSCs after the bioprinting process are still 
expected to have the ability to be directed into osteo-
blasts, adipocytes or chondroblasts during in  vitro cul-
ture [156]. The impacts of various shear stresses on the 
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functionality of the living cells, particularly on several 
vulnerable cell types such as stem cells have been care-
fully studied. In this section, several typical studies on 
cell functionality such as cell proliferation and differen-
tiation abilities and the related gene expression after dif-
ferent bioprinting processes are briefly summarized.

Yumoto et  al. [157] developed a cell-friendly and 
almost stress-free inkjet-based bioprinting system and 
found that the post-printing cells were almost undam-
aged by examining cell viability as well as the gene 
expression of mESCs. In their study, the average cell 
viability of the prepared samples was maintained at 
90% at 48  h after printing, a significant number of cells 
were observed to be able to proliferate, and an RNA-
seq analysis was conducted on post-printing differen-
tiation abilities and gene expressions. The experimental 
results showed that inkjet-based bioprinting had little 
effect on cell survival, and the stem cells after bioprint-
ing retained their differentiation ability. Narayanan et al. 
[158] focused on the utilization of extrusion-based bio-
printing to fabricate musculoskeletal soft tissue-like 
constructs using the bioink with a mixture of alginate, 
polylactic acid nanofibers and hASCs. The experimental 
results showed that the nanofibers enhanced the cell pro-
liferation ability and improved cell viability. In addition, 
collagen and proteoglycan were detected to demonstrate 
successful ECM secretion and chondrogenic differentia-
tion. Yu et  al. [159] utilized a coaxial nozzle-based bio-
printing system to form tubular channels using the bioink 
containing alginate and cartilage progenitor cells (CPCs). 
In their study, even though cell death was observed due 
to severe shear stress imposed on the cells during the 
ejection process, cell recovery was found during culture. 
In addition, the functionality and differentiation abil-
ity were proved to be maintained by checking cartilage-
associated genetic marker expression. Sorkio et  al. [10] 
selected laser-assisted bioprinting to deposit the bioink 
containing hSEC-LESC/hASCs, human laminin and col-
lagen I into corneal structures with different types. As 
it is a relatively biocompatible bioprinting process, cell 
viability measured after printing was maintained at a 
high level. Successful expressions such as Ki67, p63α and 
p40, and the migration of hASCs from the printed struc-
ture to the host tissue indicate the functionality of the 
stem cells after printing and demonstrate the viability of 
using laser-assisted bioprinting associated with human 
stem cells to form native corneal-like structures. Hong 
et al. [11] selected a DLP bioprinting system to print the 
bioink composed of Silk-GMA and chondrocytes. Cell 
viability, proliferation and differentiation abilities of the 
encapsulated chondrocytes were still maintained at a 
high level during a 4-week in  vitro culture. In addition, 
during in vivo experiments by transplanting the printed 

constructs into a rabbit model with the partially defected 
trachea, the formation of new cartilage-like tissue con-
structs was observed, demonstrating its feasibility for 
future cartilage regeneration. Cell viability, as well as cell 
functionality, is extremely important for the fabrication 
of 3D artificial tissues/organs, to ensure the engineered 
tissues/organs are both anatomically and functionally 
similar to the native tissues/organs [56, 160].

Methods to reduce cell damage
3D bioprinting has achieved significant advancements 
over the past decade, enabling the fabrication of 3D arti-
ficial tissues/organs with high precision and resolution. 
However, enduring various stresses during the bioprint-
ing processes may lead to the decrease of cell viability, 
loss of cell functionality, and eventual mis-functionality 
of the 3D artificial tissues/organs. Maintaining high cell 
viability is critical to ensure desirable biological print-
ing performance since only the surviving cells during 
the bioprinting processes have the potential to retain 
their pluripotency such as the proliferation and differ-
entiation ability, and thus ensure proper functionality of 
the 3D-bioprinted constructs. Generally, cell viability is 
determined by the overall stress mainly coming from two 
sources including that from the materials and that from 
the printing process. For example, in nozzle-based bio-
printing such as inkjet-based bioprinting and extrusion-
based bioprinting, cells are experiencing the shear stress 
while being ejected out of the nozzle, and in light source-
incorporated bioprinting processes such as laser-assisted 
bioprinting and stereolithography-based bioprinting, 
cells are injured mainly due to the radiative stress and 
shear stress. The maintenance of cell viability can origi-
nate from properly dealing with these two sources of cell 
injury: materials and processes.

The materials suitable for 3D bioprinting should have 
several attributes such as good biocompatibility and 
biodegradability, sufficient mechanical strength, easy 
crosslinking mechanism, satisfying printability, and suit-
able rheological properties, to name a few [161]. Cur-
rently, natural polymers are more biocompatible but lack 
sufficient mechanical strength to support the structure 
during and after printing, while synthetic hydrogels have 
tunable physical/mechanical properties despite their 
inferior biocompatibility. The appearance of interpen-
etrating network hydrogels (IPNs), which are formed by 
mixing multiple separate hydrogels, has partially solved 
this problem. Combining the advantages of each hydro-
gel, IPNs have been broadly utilized in various applica-
tions [162]. However, simultaneous 3D bioprinting of 
multiple types of hydrogels may increase the complex-
ity of printing and elongate the printing time because 
different hydrogels may have different crosslinking 
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mechanisms. The crosslinking mechanism of the bio-
logical materials should also be considered when select-
ing the biological materials. For example, when materials 
with a photocrosslinking mechanism such as GelMA 
is selected for 3D bioprinting, the light exposure time 
should be carefully chosen to avoid excessive cell injury/
damage. In addition, chemical crosslinking has been 
reported to be more harmful than ionic crosslinking 
[163]. Therefore, materials with ionic crosslinking mech-
anism should be considered for higher cell viability when 
possible. Alternatively, it would be reasonable to consider 
approaches to decrease the overall stress generated dur-
ing the printing process to improve cell viability. Cur-
rently, the straightforward method to reduce the stress 
imposed on the cells and thus increase cell viability is to 
optimize the process parameters. For example, optimiz-
ing the printing parameters such as in extrusion-based 
bioprinting has proven to help minimize the stress acting 
on the encapsulated living cells and increasing cell viabil-
ity [164]. Better design of bioprinting system has been an 
alternative approach to protect the cells from injury dur-
ing bioprinting and increase cell viability. For example, it 
was reported that modifying the shape of the nozzle from 
a straight nozzle to a cone shape was able to reduce the 
shear stress generated during the printing process and 
thus significantly increase cell viability [165]. In addi-
tion, as mentioned in this review, the significant effect of 
shear stress on cell viability has been highlighted when 
the cell-laden droplets are landing on the substrate in 
droplet-based bioprinting such as inkjet-based bioprint-
ing and laser-assisted bioprinting. Using the substrate 
with low-absorptivity biomaterials such as wet Matrigel 
or low thermal conductivity materials such as polytetra-
fluoroethylene (PTFE) has shown to help increase the cell 
survival by providing a cushion during landing [166, 167].

The currently available choices of biocompatible mate-
rials, especially the photocrosslinkable materials are still 
quite limited. In addition, when photocrosslinkable mate-
rials are selected for stereolithography-based bioprinting 
or hybrid bioprinting, the presence of photoinitiator is 
necessary to initiate the photocrosslinking process. How-
ever, even the two commonly used photoinitiators such 
as Irgacure 2959 and LAP have been proven to be harm-
ful to the living cells before being crosslinked, especially 
after long-time printing [133]. Therefore, development of 
the next-generation polymer/bioink with enhanced prop-
erties is necessary [168], and the next-generation bio-
logical material is expected to be superior to the available 
ones and better meet the criteria of bioink requirements. 
Alternatively, from the printing process, nozzle-free 
mechanisms such as laser-assisted bioprintings have been 
reported to be capable to provide higher cell viability 

compared to the nozzle-based bioprinting such as extru-
sion-based bioprinting, as it reduces the shear stress 
imposed on the living cells while being ejected out from 
the nozzle. Therefore, it is also reasonable to consider 
shifting from the nozzle-based to nozzle-free bioprinting 
or hybrid printing to reduce cell damage and increase cell 
viability [169]. Machine learning which can address sev-
eral limitations of physics-based models and provide an 
innovational avenue to predict the printing performance 
might also be helpful for further reducing cell damage 
and thus increasing cell viability. For example, in a recent 
study reported by Xu et  al. [75], a predictive modeling 
approach based on machine learning was presented to 
understand the effects of several processing parameters 
on cell viability during stereolithography-based bioprint-
ing. In the future, machine learning is envisioned to facil-
itate the researchers in this field to better understand the 
underlying mechanisms of 3D bioprinting and improve 
the printing performance (e.g., cellular activities).

Conclusions
3D bioprinting has the potential to be more involved in 
the military such as promptly replacing the damaged tis-
sues and organs in the combat zone and remote areas. 
Even though 3D bioprinting has provided an innovative 
approach for drug screening and replacing damaged tis-
sues/organs, it also generates several ethical concerns. 
Ethical and regulatory problems have emerged since 3D 
bioprinting becomes more and more involved in medicine 
and other engineering fields. For example, it is important 
to examine the main risks associated with transplant-
ing 3D-bioprinted tissues/organs into human body [170]. 
Therefore, collaboration between academia, industry and 
hospital is necessary to amend the regulations, which will 
facilitate the clinical transplantation of 3D-bioprinted tis-
sues/organs [171]. In addition, official organizations such 
as the International Organization of Standards (ISO) and 
the American Society for Testing and Materials (ASTM) 
should develop standards and guidelines on bioprint-
ing procedures and test methods [171]. To conclude, this 
review discusses the pathways triggering cell damage, 
and the major factors affecting cell viability during each 
bioprinting process, presents the models to quantify cell 
damage, summarizes the typical studies on cell viabil-
ity and functionality, and proposes several directions for 
better maintaining cell viability during 3D bioprinting 
processes. Concisely, as a multidisciplinary field, better 
printing quality of the 3D-bioprinted artificial tissues/
organs with higher cell viability and functionality requires 
the development of more suitable biological materials, 
continuous improvements on the printing techniques, 
and better design of the printing systems.
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