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Abstract 

Background: The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mecha‑
nisms, among which transcriptional regulation is one of the most important components. Alternative splicing 
dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell 
cycle. However, the patterns of transcript isoform expression in the cell cycle are unclear. Therapies targeting cell cycle 
checkpoints are commonly used as anticancer therapies, but none of them have been designed or evaluated at the 
alternative splicing transcript level. The utility of these transcripts as markers of cell cycle‑related drug sensitivity is still 
unknown, and studies on the expression patterns of cell cycle‑targeting drug‑related transcripts are also rare.

Methods: To explore alternative splicing patterns during cell cycle progression, we performed sequential tran‑
scriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA‑MB‑231 cell 
lines, using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples, and we 
developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle. Genom‑
ics of Drug Sensitivity in Cancer (GDSC) drug sensitivity datasets and Cancer Cell Line Encyclopedia (CCLE) transcript 
datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity. We identi‑
fied transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients. Cytotoxicity 
assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6 (CDK4/6) inhibitors. 
Finally, alternative splicing transcripts associated with mitotic (M) phase arrest were analyzed using an RNA synthesis 
inhibition assay and transcriptome analysis.

Results: We established high‑resolution transcriptome datasets of synchronized cell cycle samples from colon 
cancer HCT116 and breast cancer MDA‑MB‑231 cells. The results of the cell cycle assessment showed that 43,326, 
41,578 and 29,244 transcripts were found to be periodically expressed in HeLa, HCT116 and MDA‑MB‑231 cells, 
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Background
The cell cycle is a critical process in cellular biology and 
has been the focus of cancer research. The cell cycle con-
sists of four typical phases:  G0/G1, S (DNA synthesis), 
 G2, and M (mitosis). These four phases enable exquisite 
control of DNA replication and cell division cycles and 
are highly conserved. The main processes during the 
cell cycle include related cellular functions during each 
phase, the control of cell cycle checkpoints, replication 
of cellular components, and mechanisms for the fine 
control of cell division [1]. Transcriptional regulation is 
an important mechanism for managing cell cycle transi-
tions. A set of genes periodically expressed throughout 
the cell cycle has been identified based on their expres-
sion patterns and molecular functions [2, 3], most of 
which are cell cycle checkpoint regulators, which include 
cyclins and cyclin dependent kinases (CDKs) [4]. How-
ever, there are still many questions regarding the precise 
transcriptional regulation of the cell cycle.

Alternative splicing is a key mechanism that developed 
across the course of evolution to enable complex cellu-
lar functions to be performed in eukaryotic cells. mRNA 
is the main molecule involved in alternative splicing; 
pre-mRNA is spliced, and exons are joined selectively 
together into mature mRNA. Alternative splicing  tran-
scripts from a gene vary greatly in their mature 
sequences, resulting in multiple functional transcript iso-
forms that can induce various biological activities, greatly 
maximizing the complexity and controllability of gene 
function regulation [5]. During cell cycle transitions, 
almost all transcription processes are suspended, leaving 
alternative splicing and RNA half-life control as the main 
ways to regulate the levels of proteins and their functions 
[6, 7]. The amount of alternatively spliced transcripts that 
are responsible for cell cycle regulation fluctuates during 
the cell cycle in a conserved pattern [8]. These periodic 

alternative splicing transcripts are an essential force that 
drives or halts cell cycle progression. Understanding cell 
cycle-related periodically expressed transcripts will facili-
tate the development of novel solutions for cell cycle-
dependent diseases, such as cancer [9].

Cancer is a disease that involves the dysregulation 
of the cell cycle, which results in uncontrolled cell pro-
liferation and visible tumors [10]. Therapeutic strate-
gies targeting the cell cycle, such as CDK4/6 inhibitors, 
are important modern tumor therapies; there has been 
rapid progress in both the study of these strategies and 
their use in clinical practice [11], although most of the 
existing strategies have not been developed with alter-
natively spliced transcript levels in mind. It is of great 
significance to study the precise alternative splicing pat-
tern during the cell cycle and cell cycle-related transcript 
functions in cancer progression. Our previous studies 
indicated that aberrant alternative splicing had signifi-
cant effects on cancerous phenotypes through cell cycle 
modulation [12]. Some studies have reported abnormali-
ties in alternative splicing processes in tumors [13–15]. 
However, few of these studies have revealed the exact 
transcript fluctuation patterns and their significance in 
cancer treatment due to the  complexities and technical 
shortcomings.

To further explore the precise alternative splicing pat-
terns during the cancer cell cycle and the relationship 
of the levels of alternative splicing transcripts with sen-
sitivity to cell cycle-targeted drugs, we combined cell 
cycle synchronization and high-resolution transcriptome 
analysis to establish a new algorithm to identify peri-
odic transcripts during the cell cycle. Furthermore, since 
transcript-based research in clinical settings is rare [16], 
we integrated Genomics of Drug Sensitivity in Cancer 
(GDSC) pharmacogenomic datasets and Cancer Cell Line 
Encyclopedia (CCLE) transcriptomic datasets to explore 

respectively, among which 1280 transcripts showed this expression pattern in all three cancer cell lines. Drug sensitiv‑
ity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitiv‑
ity than their corresponding genes. Cell cycle‑related drug screening showed that the level of the CDK4 transcript 
ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level 
of the CDK4 reference transcript ENST00000257904. The transcriptional inhibition assay following M phase arrest 
further confirmed the M‑phase‑specific expression of the splicing transcripts. Combined with the cell cycle‑related 
drug screening, the results also showed that a set of periodic transcripts, for example, ENST00000314392 (a dolichyl‑
phosphate mannosyltransferase polypeptide 2 isoform transcript), was more associated with drug sensitivity than the 
levels of their corresponding gene transcripts.

Conclusions: In summary, we identified a panel of cell cycle‑related periodic transcripts and found that the levels of 
transcripts of drug target genes showed different values for predicting drug sensitivity, providing novel insights into 
alternative splicing‑related drug development and evaluation.

Keywords: Cell cycle, Alternative splicing, Transcriptome, Drug resistance, Cyclin dependent kinase 4/6 inhibitor, 
Dolichyl‑phosphate mannosyltransferase polypeptide 2



Page 3 of 16Li et al. Military Medical Research            (2022) 9:71  

the value of transcripts in drug sensitivity prediction. 
These findings will provide significant insights into tran-
script dynamics during the cancer cell cycle and the sig-
nificance of transcript patterns in predicting sensitivity to 
cell cycle-targeted chemotherapeutics, which will greatly 
enhance anticancer drug research and development.

Methods
Cell culture
The HCT116, MDA-MB-231, and MCF7 cell lines were 
obtained from the National Infrastructure of Cell Line 
Resources (Beijing, China). All the cell lines were cul-
tured in DMEM plus 10% FBS. All cells were maintained 
in humidified incubators with 5%  CO2. The cells were 
maintained at 30–90% confluence and passaged at 1:2–
1:3 ratio after 0.25% trypsin digestion.

Cell cycle synchronization
Synchronization of the  G1/S phase of the cell cycle 
was performed by following the protocol previously 
described by Dominguez et al. [17]. Cells were plated into 
6  cm dishes in complete media at 30% confluence and 
allowed to attach for 16 h. For the first arrest of the cell 
cycle, HCT116 cells were treated with 2 mmol/L thymi-
dine for 24 h, washed 3 times with PBS, and then supple-
mented with fresh complete medium for 10 h; 2 mmol/L 
thymidine was subsequently added for a second arrest 
and incubated for 14 h, and then the successful blockade 
of the cell cycle in  G1/S phase was confirmed. For MDA-
MB-231 cells, the first round of blockade was carried out 
by treatment with 2 mmol/L thymidine for 22 h, 3 washes 
with PBS, and then supplementation with fresh complete 
media for 8 h; in the second round of blockade, the cells 
were treated with 2 mmol/L thymidine for 18 h, and suc-
cessful blockade of the cell cycle in  G1/S phase was con-
firmed. All the cells were washed 3 times with PBS and 
cultured in fresh complete medium for cell cycle release. 
HCT116 cells were harvested at 0, 3, 7, 8, 9, 10, 11 and 
13  h after  G1/S phase release; MDA-MB-231 cells were 
harvested at 0, 3, 4.5, 6, 7, 9, 10, 11.5, 13, and 16 h after 
 G1/S phase release. For M phase arrest, when MDA-
MB-231 cells were released from  G1/S phase, 1  µg/ml 
nocodazole was added, and after 10 h, they were supple-
mented with 5 µg/ml actinomycin D.

Cell cycle analysis
Cells were collected with trypsin digestion, washed with 
PBS, and fixed in 70% ethanol at − 20 ℃ for at least 4 h. 
Alcohol was removed by centrifugation. The cells were 
washed with PBS, PI staining solution was added and 

incubated for 10 min, and the cells were analyzed by flow 
cytometry.

Transcript plasmid construction
To construct the CDK4 transcript vector, the CDSs of 
ENST00000257904 and ENST00000547281 transcripts 
were cloned between the BamH1 and Not1 sites of the 
pCDNA3.1(+) vector.

Transfection of plasmids
MCF7 cells were transfected with the plasmid vectors 
using Lipofectamine 2000 reagent (Thermo Fisher, 
USA) according to the protocol and when the cells 
reached 70% confluence in 6-well plates. The amount 
of transfection reagent and plasmid used were 5 μl and 
2.5  μg, respectively. Six hours after transfection, cells 
were seeded into plates for subsequent experiments.

Cell viability analysis
Cell proliferation assays were performed using the 
xCELLigence Real-Time Cell Analyzer system (Roche, 
Switzerland). Cells were seeded in a 16-well E-plate 
at 30% confluence with 200  μl medium/well, and two 
replicates on an E-plate were performed. Cytotoxic-
ity experiments were performed by adding ribociclib 
(MedChemExpress, USA) to the system 14  h after the 
cells were seeded into the E-plate. Proliferation and 
drug toxicity assays were repeated 3 times using MTS 
experiments (Promega, USA) according to the protocol.

Quantitative real‑time PCR
Forty-eight hours after transfection, total RNA was 
extracted using TRIzol reagent (Invitrogen, USA) 
according to the manufacturer’s protocol. Total RNA 
(100  ng) was reverse-transcribed into cDNA with 
RevertAid reagent (Thermo, USA) using Oligo (dT) 18. 
Quantification of mRNA expression was performed 
using ABI QSDX and QuantStudio 5 (Thermo, USA). 
The primers used were as follows: ENST00000257904 
primer: forward: 5′-CAG TTC GTG AGG TGG CTT 
TA-3′, reverse: 5′-TCC TTA GGT CCT GGT CTA CATG-
3′; ENST00000547281 primer: forward: 5′-AGG TAA 
CCC TGG TGT TTG AGC-3′, reverse: 5′-AAT TGG CAT 
GAA GGA AAT CTAG-3′.

RNA‑seq
For HeLa cells, we downloaded the raw RNA-seq data 
of samples 1 to 8 from GSE81485. For the HCT116 and 
MDA-MB-231 cell lines, the cells were collected with 
trypsin digestion and washed with PBS, and RNA was 
extracted using TRIzol. After strand-specific library 
construction, Novaseq6000 was used for sequencing, 
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and the raw data of each sample were more than 10 Gb. 
After all the FASTQ files were quality controlled, BAM 
files and fragments per kilobase of exon model per mil-
lion mapped fragments (FPKM) values of transcripts 
were analyzed with HISAT2 and StringTie, data were 
mapped with the GRCH38 genome, and the frequency 
of alternative splicing was calculated with rMATS4.0.1.

Identification of periodic transcripts
In the RNA-seq FPKM matrix, 8 samples of HeLa or 
HCT116 cells and 10 samples of MDA-MB-231 cells were 
ordered according to our cell cycle synchronization sample 
collection protocol. We generated an algorithm to identify 
the periodic transcripts. Our assessment of periodic tran-
scripts consisted of two parts. The first part consisted of 
the following 3 steps: 1) calculate i and n at the maximum 
S3 to determine the position of the periodic peak; 2) for 
groups of 8 samples in total, use r3 > 18 to screen for signifi-
cant peaks, and for groups of 10 samples in total, use r3 > 24 
to screen for significant peaks; 3) use k3 > 0.3 to avoid col-
lapse in the middle of peaks. The algorithm is as follows:

where ai is the FPKM value of a transcript in sample i. 
For HeLa and HCT116 cells, n = 1 to 8, and a0 = a8, 
a9 = a1. For MDA-MB-231 cells, n = 1 to 10, and a0 = a10, 

a11 = a1. S3 =
n+1
∑

i=n−1

ai , when S3 is maximum, for the n:

Ri is the value rank of ai among all samples. For HeLa and 
HCT116 cells, i = 1 to 8, and for MDA-MB-231 cells, i = 1 
to 10. For  the second part of the calculation of the peri-
odic peak, the sample size was increased from 3 to 5, and 
included the following 4 steps: 1) calculate i and n at the 
maximum S5; 2) use r5 > 25 for groups of 8 samples in total 
and r5 > 35 for groups of 10 samples in total; 3) use k5 > 0.6; 
4) use k3 > 0.3. The algorithm was as follows:

For HeLa and HCT116 cells, n = 1 to 8, and a-1 = a7, 
a0 = a8, a9 = a1, a10 = a2. For MDA-MB-231 cells, n = 1 to 

10, and a-1 = a9, a0 = a10, a11 = a1, a12 = a2. S5 =
n+2

i=n−2

ai , 

when S5 is maximum, for the n,

k3 =
ai

max

(

∑

n+1

i=n−1
ai

)

r3 =

n+1
∑

i=n−1

Ri

k5 =
ai−1 + ai + ai+1

max

(

∑

n+2

i=n−2
ai

)

k3 =
ai

∑

n+1

i=n−1
ai

Heatmap and cluster analyses
The periodic transcript FPKM matrix of HeLa, HCT116 
and MDA-MB-231 cells were sorted according to the 
sample number of the periodic peaks, and GENE-E was 
used to draw the heatmap. The periodic transcripts were 
subjected to Gene Ontology Biological Process (GO-BP) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses with DAVID [18], and diagrams 
were drawn with ggplot2.

Identification of drug sensitivity‑related transcript 
isoforms
In this study, the transcript isoforms of genes targeted 
by drugs were analyzed. To identify the relationship 
between the transcript isoform level and corresponding 
drug sensitivity in the cell lines, we developed a pipe-
line to automatically match drugs and their target gene 
transcript isoforms and performed Spearman’s correla-
tion analyses of the drug 50% inhibitory concentration 
 (IC50) values and matched isoform levels (Fig.  1). First, 
we used GDSC data to establish a cell-drug  IC50 matrix. 
We then used CCLE data to establish a cell-gene/isoform 
expression matrix and input the two matrices into the 
pipeline. In the pipeline, the drugs and corresponding 
target genes/transcript isoforms in the two matrices were 
matched one by one, and we calculated the correlation 
between drug  IC50 values and gene/transcript isoform 
levels in various cell lines. After obtaining the correla-
tion coefficient matrix between all drug target gene/tran-
script isoform levels and drug  IC50 values, we compared 
the correlation coefficients for the individual transcript 
isoforms or their corresponding genes. The transcript 
isoforms with an absolute value of correlation coefficient 
0.1 higher than their corresponding genes were defined 
as drug sensitivity-related transcripts.

Statistical analysis
Survival analysis was performed and plotted using the 
KMplot database [19]. Venn diagram analysis was per-
formed using http:// bioin forma tics. psb. ugent. be/ webto 
ols/ Venn. The continuous variables were presented as the 
mean ± SD and analyzed by Student’s t-test after Shap-
iro–Wilk and Levene test. Spearman’s and Pearson’s anal-
yses were conducted for correlation analysis in this study 
using R 4.0.2 and R Studio software. All statistical tests 
were two-sided, and a P-value < 0.05 was considered sta-
tistically significant.

r5 =

n+2
∑

i=n−2

Ri

http://bioinformatics.psb.ugent.be/webtools/Venn
http://bioinformatics.psb.ugent.be/webtools/Venn
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Results
Periodically expressed transcripts during the cell cycle
Datasets derived from the analysis of transcriptome data 
during cell cycle progression in typical cancer cell models 
were retrieved, including data from cervical cancer HeLa, 
colon cancer HCT116 and breast cancer MDA-MB-231 
cells. The high-quality and high-sequencing-depth HeLa 
cell sequential transcriptome dataset was published by 
Dominguez et  al. [17] in 2016. Since algorithms avail-
able at that time could only detect  a part of  transcript 
splicing events compared with current algorithms, we 
adopted HISAT2 and StringTie to reanalyze the data-
set. The HCT116 transcriptome was derived from GEO 
data previously published by our group [12]. For the cur-
rent study, we also produced parallel in-depth sequen-
tial transcriptome data by cell cycle synchronization of 
MDA-MB-231 breast cancer cells. The cell cycle phases 
of HCT116 and MDA-MB-231 cells were successfully 
synchronized, and the cells were assessed by flow cytom-
etry analysis (Fig.  2a–c). After the transcriptome was 
assessed, we extracted and analyzed the expression pat-
terns of some typical cell cycle-related genes in HCT116 
and MDA-MB-231 cells, including the genes expressed in 

the  G1/S phases, such as CCNE2, PCNA, CDK2, CCND3, 
BUB3, E2F2, RFC1 and NEK6; genes expressed in the 
 G2/M phases, such as CDC20, CCNA2, CCNB1, BUB1, 
TP53, AURKA, CENPF, CENPM, CDKN2D, LMNB1, 
CENPE and TOP2A; and genes expressed in the M-G1 
phases, such as TPR, RFC1, CENPJ, NEDD1, ATM, 
CDC23, LPIN1, NINL, RAD9A, PCBP4 and NEK6. The 
results confirmed successful synchronization of the  G1, S, 
 G2 and M phases (Fig. 2d–i).

To identify the transcripts that were periodically regu-
lated during the cell cycle, we constructed an algorithm, 
applied it to the transcriptome dataset and identified the 
peak of each periodic transcript fluctuating with the cell 
cycle (see the Methods section). Compared with previ-
ously published algorithms [3, 17], our algorithm does 
not use classical periodic genes as references but it is 
dependent upon whether a gene has an expression peak 
during the cell cycle. This strategy greatly improves the 
sensitivity of the algorithm. Using this algorithm, we 
analyzed the transcriptome data of HeLa, HCT116 and 
MDA-MB-231 cells, and 43,326, 41,578 and 29,244 peri-
odically expressed transcripts were identified. According 
to the position of the expression peak of each candidate 

Fig. 1 Analysis pipeline of drug sensitivity‑related transcripts and the number of drugs, genes, and transcripts identified in each step. The data 
processing steps (in blue) are used to match the data in GDSC and CCLE datasets and screen drug sensitivity transcripts. The matching and 
screening number of drugs, genes, and transcripts in each step are shown in the box (in white). GDSC Genomics of Drug Sensitivity in Cancer, CCLE 
cancer cell line encyclopedia
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Fig. 2 (See legend on next page.)
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transcript, we visualized the transcript expression as 
FPKM values throughout the  G1, S,  G2, and M phases 
in the three cancer cell models (Fig. 3a) and showed the 
expression pattern of the periodic transcripts across a 
complete cell cycle, the full transcriptome data are shown 
in the Additional file 1: Tables S1–S3. To understand the 
overall characteristic fluctuation of these transcripts, we 
further analyzed the average expression levels of each 
transcript in the panel of cell lines (Fig.  3b). We found 
that the overall levels of the periodic transcripts in the 
three cell types were similar. In addition, the transcript 
annotation categories in the three cell lines were also 
similar, with protein-coding transcripts accounting for 
more than 45% of the total transcripts (Fig. 3c). Further-
more, most of the corresponding genes of the transcripts 
(almost 70%) were protein-coding genes (Fig. 3d). These 
results suggest that most of the periodic transcripts were 
protein-coding and are thus capable of being targeted by 
current drug development strategies.

A common set of cell cycle‑related periodic transcripts 
in different cell lines
During cell division, a large number of genes may 
undergo systematic switching in their splicing patterns, 
which results in vastly diverse profiles of periodic tran-
scripts. To extract the core sets of transcripts responsible 
for cell cycle regulation, we obtained the common peri-
odic transcripts from the three cell lines (Fig. 4a). Among 
the 5753 transcripts shared in the three cell lines, there 
were 1280 transcripts whose expression peaks appeared 
in the same or adjacent cell cycle phases; that is, they 
showed restricted parallel expression. For these 1280 
transcripts, we sorted their peak positions in HCT116 
cells according to their cell cycle phases and plotted 
their pattern in all samples of HeLa, HCT116 and MDA-
MB-231 cells (Fig.  4b). The full data are shown in the 
Additional file  1: Table  S4. Furthermore, we performed 
GO-BP clustering analysis of the 1223 genes to which 
the 1280 transcripts corresponded and found that the 
main functions of the genes were related to the cell cycle, 

splicing and translation (Fig.  4c), and similar pathways 
were also significantly enriched in the KEGG analysis 
(Fig. 4d). These results suggest that most of the identified 
genes have been identified as cell cycle-related genes in 
previous studies, which further confirms the credibility 
of our analysis. Furthermore, the fact that the genes were 
enriched in RNA splicing functions indicates the impor-
tance of alternative splicing regulation in the cell cycle.

Transcripts that correlate with drug sensitivity more 
stronger than drug‑target genes
To identify the  cell cycle-related alternatively spliced 
transcripts, in addition to constructing transcrip-
tome datasets of samples from different phases of the 
cell cycle, an integrated analysis of the relationship 
between cell cycle-related drugs and cell transcrip-
tomes in large databases is another feasible solution. 
The two schemes can complement each other to fur-
ther evaluate the potential clinical application of cell 
cycle-related transcripts. An accurate understanding 
of transcript expression patterns and their relationship 
with drug sensitivity is important for drug design and 
clinical application and optimization [20, 21]. Many 
modern tumor therapies target cell cycle checkpoints 
[22]. Whether cell cycle-based periodic transcripts 
have an important role in the regulation of drug sen-
sitivity is a notable topic for investigation, and a bet-
ter understanding of the relationship between periodic 
transcript expression and drug sensitivity can provide 
in-depth information regarding this matter. Given the 
lack of studies at the transcript level, we compared the 
correlation between anticancer drug sensitivity and the 
expression of targets at the gene or transcript level. The 
GDSC database was employed to extract the  IC50 values 
of more than 400 drugs tested in a large panel of cancer 
cell lines [23]. The CCLE database includes deep tran-
scriptomic sequencing data for thousands of cell types 
[24]. To efficiently obtain information from these data-
bases, we developed a pipeline to calculate the corre-
lation of drug sensitivity with transcripts targetable by 

(See figure on previous page.)
Fig. 2 Establishment of cell cycle transcriptome datasets. a Time‑point pattern of thymidine double block and cell cycle release. b Flow cytometry 
plots of the cell cycle distribution of synchronized HCT116 cells. P3/4/5 are the proportion of cells in  G1, S, and  G2/M phases, respectively. X‑axis is 
the time since cell cycle release. c Flow cytometry plots of the cell cycle distribution of synchronized MDA‑MB‑231 cells. P3/4/5 are the proportion 
of cells in  G1, S, and  G2/M phases, respectively. X‑axis is the time since cell cycle release. d–f FPKMs for some cell‑cycle‑related genes that are 
characteristically expressed in the  G1/S,  G2/M, and M‑G1 phases in synchronized HCT116 cells, cells were harvested at 0, 3, 7, 8, 9, 10, 11, and 13 h 
after  G1/S phase release, and diagram below indicates cell cycle stage. FPKM values of CCNE2, PCNA, CDK2, CCND3, and BUB3 (d); FPKM values 
of CDC20, CCNA2, CCNB1, BUB1, TP53, AURKA, and CENPF (e); FPKM values of TPR, RFC1, CENPJ, NEDD1, ATM, and CDC23 (f). g–i FPKMs for some 
representative genes that are highly expressed in the  G1/S,  G2/M, and M‑G1 phases in MDA‑MB‑231 breast cancer cells, cells were harvested at 0, 
3, 4.5, 6, 7, 9, 10, 11.5, 13, and 16 h after  G1/S phase release, and diagram below indicates cell cycle stage. FPKM values of E2F2, CCNE2, PCNA, RFC1, 
and NEK6 (g). FPKM values of CENPM, CDKN2D, LMNB1, CCNA2, CENPF, CENPE, and TOP2A (h); FPKM values of LPIN1, NINL, RAD9A, PCBP4, and NEK6 (i). 
FPKM fragments per kilobase of exon model per million mapped fragments
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Fig. 3 Expression patterns and characteristics of periodic transcripts in HeLa cervical cancer cells, HCT116 colon cancer cells and MDA‑MB‑231 
breast cancer cells. a The rows show the normalized FPKM values of periodic transcripts to visualize their dynamic changes during the cell cycle. 
Each column represents a cell sample. They are samples at consecutive time points after cell cycle synchronization in  G1/S phase. From left to right 
are samples in each phase of  G1/S‑S‑G2/M‑G1. Each row represents a transcript, and the transcripts from top to bottom are the transcripts highly 
expressed in each phase of  G1/S‑S‑G2/M‑G1. b Overall distribution of FPKM values for all the periodic transcripts in HeLa, HCT116 and MDA‑MB‑231 
cells. c Bar plot shows the proportion of major types of periodic transcripts (the proportion is more than 1%). The reference is the collection of all 
expressed periodic and aperiodic transcripts to compare the enrichment of transcript types, the types of periodic transcripts in the figure are not 
significantly enriched. d Bar plot shows the proportion of the main types of genes periodic transcripts belong to (the proportion is more than 
1%), and the reference is the collection of all expressed genes. Among the protein‑coding gene type, the proportion of genes to which periodic 
transcripts belong is higher than that of the reference, indicating that the periodic transcripts were enriched to protein‑coding genes. FPKM 
fragments per kilobase of exon model per million mapped fragments
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drugs and the corresponding genes targetable by drugs, 
and we specifically focused on the transcripts that were 
more correlated with drug sensitivity than their corre-
sponding genes. The transcript lists are shown in Addi-
tional file  1: Tables S5 and S6. The results revealed a 
large panel of transcripts that had higher correlations 
with drug sensitivity than their corresponding genes. 
KEGG clustering analysis of the corresponding genes 
indicated that the associated enrichment terms were 
related to broad functions and not to a specific bio-
logical process, for example, splicing-related functions 
(Fig.  5a). These results showed the complexity of drug 
sensitivity regulation beyond the intended target.

Accurately assessing drug sensitivity by transcript levels, 
not gene levels
Since the pattern of transcript expression is highly tis-
sue-specific and cancer type dependent, we carried out 
independent analyses based on cancer type to determine 
whether the relationship of transcript level with drug 
sensitivity is cancer type dependent. The total number of 

transcript-drug sensitivity correlation events and the num-
ber of involved unique transcripts are shown (Fig. 5b). The 
statistics of 220 drug-targeted genes showed that their 
transcripts were distributed extensively in each cancer 
type (Fig.  5b). Intersection analysis illustrated vastly dif-
ferent patterns of drug sensitivity-related transcripts in 
different types of tumors (Fig.  5c), which suggested that 
tissue specificity should be accounted for in transcript-
based drug sensitivity analysis. The results in each cancer 
type also showed that there was a large group of transcript 
isoforms that had higher correlations with drug sensitivity 
than their corresponding genes, and the evaluation ability 
of these transcripts was more tissue-specific.

Relationship between ENST00000547281 and increased 
resistance to CDK4/6 inhibitors
CDK4, a target of palbociclib and ribociclib, is a major 
regulator of the  G1/S phase transition [25]. According to 
the Ensembl database, compared with the CDK4 refer-
ence transcript ENST00000257904, the CDK4 alterna-
tive splicing transcript ENST00000547281 lacks exons 

Fig. 4 Functional enrichment of the common periodic transcripts. a Venn diagram showing the common periodic transcripts of HeLa, HCT116 
and MDA‑MB‑231 cells. b Heatmap showing the 1280 transcripts with the same periodic expression patterns in HeLa, HCT116 and MDA‑MB‑231 
cells. Each column represents a cell sample. They are samples at consecutive time points after cell cycle synchronization in  G1/S phase. From left 
to right are samples in each phase of  G1/S‑S‑G2/M‑G1. Each row represents a transcript, and the transcripts from top to bottom are the transcripts 
highly expressed in each phase of  G1/S‑S‑G2/M‑G1. The heatmap is sorted according to the cell cycle phase of highly expressed transcripts in 
HCT116 cells, and the transcript order of HeLa and MDA‑MB‑231 is consistent with that of HCT116. c, d Bubble plots showing the top 10 GO‑BP 
and KEGG pathway terms of the 1223 genes corresponding to the 1280 periodic transcripts. GO‑BP Gene Ontology Biological Process, KEGG Kyoto 
Encyclopedia of Genes and Genomes
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1, 2 and 7. We found that the correlations of sensitivity 
to the CDK4/6 inhibitors palbociclib and ribociclib with 
ENST00000547281 were significantly stronger than the 
correlations of sensitivity to the CDK4/6 inhibitors pal-
bociclib and ribociclib with the CDK4 gene in breast 
cancer (Fig.  6a). To confirm the biological significance 
of the correlations of these transcripts with sensitivity to 
CDK4/6 inhibitors, we constructed ENST00000257904 
and ENST00000547281 transcript expression plasmids 
using the pCDNA3.1 vector (Fig.  6b), transfected the 
plasmids into MCF7 cells (a model of luminal A-type 
breast cancer, a subtype for which ribociclib treatment is 
used, Fig. 6c), and detected the sensitivity of the plasmid-
transfected cells to ribociclib. The results showed that 
ENST00000547281 significantly increased the resistance 
of cells to ribociclib compared with ENST00000257904 
based on growth inhibition after ribociclib treatment 
(Fig. 6d). These results further confirmed that the splic-
ing and expression patterns of transcripts affect the cor-
relations of transcripts with drug sensitivity.

Mitosis‑specific expression of splicing transcripts 
correlates with chemotherapy sensitivity
Mitotic arrest is an important mechanism used to kill 
cancer cells by antitumor drugs, including some currently 

widely used chemotherapeutic drugs and targeted drugs, 
such as paclitaxel and vinblastine [26]. A better under-
standing of the relationship between the newly identified 
periodic transcripts and drug sensitivity will facilitate 
the development of mitosis-related antitumor thera-
pies. We further extracted the expression profiles of the 
periodic transcripts shown in Fig.  4a, from the CCLE 
transcriptome dataset analysis with relationships with 
sensitivity to mitosis- and cell cycle-related drug  IC50 
values in the different cell lines according to the GDSC 
database. The  IC50 values for vinorelbine, paclitaxel and 
docetaxel in each cell type were extracted to calculate 
the correlation between transcript FPKM values and 
drug  IC50 values in all cell types. The top 10 transcripts 
with positive (ENST00000260526, ENST00000388835, 
ENST00000295522, ENST00000367815, ENST0000030 
6442, ENST00000592688, ENST00000371610, ENST0000 
0422847, ENST00000252483, and ENST00000519106) 
and negative (ENST00000216468, ENST00000361204, EN 
ST00000462885, ENST00000340648, ENST00000320676, 
ENST00000585124, ENST00000375436, ENST0000039 
1857, ENST00000339399, and ENST00000398665) cor-
relations are shown in Fig. 7a.

Using the drug sensitivity analysis pipeline described 
above, we obtained a set of periodic transcripts that 

Fig. 5 Functional and tissue‑specific characteristics of drug sensitivity‑related transcripts. a Bubble plot showing the cell signaling pathways of the 
drug sensitivity‑related transcripts identified by KEGG enrichment analysis. b The number of drug sensitivity‑related transcripts identified in different 
tumor types. c Venn diagram showing the distribution of drug sensitivity‑related transcripts in different tumor types. KEGG Kyoto Encyclopedia of 
Genes and Genomes, HIF‑1 hypoxia inducible factor‑1, Fox forkhead box, COAD colon adenocarcinoma, HL hematopoietic and lymphoid tissue, 
GDSC Genomics of Drug Sensitivity in Cancer
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Fig. 6 (See legend on next page.)
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outperformed their corresponding genes in drug sensi-
tivity evaluation. For example, the ENST00000314392 
transcript of DPM2 was significantly correlated with sen-
sitivity to docetaxel, paclitaxel, vincristine and vinorel-
bine, which are cell cycle-related chemotherapeutic 
drugs (P < 0.05), and the correlations were significantly 
stronger than those of the corresponding DPM2 gene 
(Fig.  7b). Further analysis using the periodic transcript 
expression data showed that in HeLa and MDA-MB-231 
cells, the expression pattern of ENST00000314392 was 
significantly different from that of DPM2, with its expres-
sion level increasing during mitosis and decreasing after 
mitosis (Fig. 7c, d).

To verify the results from the aforementioned compre-
hensive analysis of mitosis-related transcripts in different 
cell types, we chose MDA-MB-231 cells to perform fur-
ther experiments. We subjected cycle-synchronized cells 
to nocodazole arrest after  G1/S phase release and blocked 
RNA synthesis with actinomycin D when a majority of 
the cells began to enter M phase. Samples were collected 
at 0, 1.5, 3, 4.5 and 6  h after the addition of actinomy-
cin D for transcriptome analysis. Quality control results 
showed that all the collected samples were stably main-
tained in the M phase, as shown by flow cytometry anal-
ysis (Fig.  8a), and the analysis of characteristic genes of 
cell division showed that their expression was stable and 
decreased gradually (Fig.  8b). Based on the results of 
the RNA-seq experiment, we found that the level of the 
ENST00000314392 transcript during mitosis was signifi-
cantly different from that of DPM2, and the expression 
of ENST00000314392 increased significantly after cell 
division arrest (Fig.  8c). Since we inhibited transcrip-
tion when we induced cell cycle mitosis phase arrest, 
the increased expression of ENST00000314392 was a 
result of alternative splicing regulation during cell divi-
sion, which was consistent with the periodic transcript 
expression data. In addition, these results suggested 
that periodic transcripts can be validated by transcrip-
tomic measurement after cell cycle arrest. The full tran-
scriptome data are available under the GEO database 
(GSE216497).

As there was significant regulation of DPM2 gene alter-
native splicing in mitosis and ENST00000314392 showed 
a significant correlation with mitosis-related drug sensi-
tivity, we believe that DPM2 may have a biological role 
in breast cancer progression. Survival analysis using the 
KMplot breast cancer dataset showed that high tran-
scriptional expression of DPM2 was significantly cor-
related with poor relapse-free survival (RFS) (Fig.  8d), 
and in basal-like breast cancer, in which drugs such as 
paclitaxel and docetaxel are widely recommended by 
guidelines, high DPM2 transcriptional expression was 
significantly negatively  correlated with poor RFS in the 
tumors of patients (Fig. 8e).

Discussion
In this study, cell cycle phase models in three different 
cancer cell lines were established for deep transcriptome 
analysis, and an algorithm was developed to identify 
periodically expressed alternatively spliced transcripts 
in cells. Two previous important studies assessed peri-
odic genes and alternative splicing events in HeLa cells 
using Fourier transform and Euclidean distance-based 
hierarchical clustering schemes, respectively. More than 
1000 genes or alternative splicing events were character-
ized as being periodically expressed, and these studies 
laid the groundwork for large-scale screening of peri-
odic genes and alternative splicing events [3, 17]. How-
ever, the algorithms used in the two studies  less than 
100 periodic expression events as references, which may 
have resulted in a large number of actual periodic events 
being missed. In contrast, identifying periodic expression 
events by using modified conditions and then compar-
ing these periodic expression events in multiple cell types 
might reveal more periodic alternative splicing events. 
As such, we first developed an algorithm to optimize the 
efficiency of identifying splicing transcripts and their cell 
cycle-dependent fluctuations. The main idea of this algo-
rithm was to identify peaks in an array by using numeri-
cal ranking without reference events. This algorithm had 
greater fault tolerance for waveforms to obtain more 
transcripts with periodic characteristics.

(See figure on previous page.)
Fig. 6 Relationship between ENST00000547281 and CDK4/6 inhibitor sensitivity. a Scatter diagrams of the palbociclib/ribociclib  IC50 values and 
CDK4 gene and CDK4 transcript ENST00000547281 levels. b Splicing pattern of all CDK4 transcripts, the sequencing plot is part of the sanger 
sequencing of plasmid vectors carrying CDK4 transcripts ENST00000257904 and ENST00000547281, and the black box is the translation start 
site of ENST00000547281. In the structure plot and sequencing results, it can be seen that the sequence of ENST00000547281 transcript is part 
of ENST00000257904 transcript. c The histogram shows the relative expression levels of ENST00000257904 and ENST00000547281 by plasmid 
transfection into MCF7 cells, the left side is the ENST00000257904 plasmid group, and the right side is the ENST00000547281 plasmid group. d Line 
graph shows the proliferation and drug toxicity curves of MCF7 cells. The X‑axis is the time after the cells were seeded into the plates, and the Y‑axis 
is cell density index normalized by that at 0 h. NC negative control, GDSC Genomics of Drug Sensitivity in Cancer
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Fig. 7 Relationship between periodic transcripts and chemotherapeutic drug sensitivity. a Heatmap listing the top 10 transcripts with the highest 
positive (ENST00000260526, ENST00000388835, ENST00000295522, ENST00000367815, ENST00000306442, ENST00000592688, ENST00000371610, 
ENST00000422847, ENST00000252483, and ENST00000519106) and negative (ENST00000216468, ENST00000361204, ENST00000462885, 
ENST00000340648, ENST00000320676, ENST00000585124, ENST00000375436, ENST00000391857, ENST00000339399, and ENST00000398665) 
correlations with sensitivity to docetaxel, paclitaxel, vinblastine, vincristine and vinorelbine. Line graphs showing the periodic expression patterns 
of the transcripts in HeLa, HCT116 and MDA‑MB‑231 cells are also shown. b Correlations of DPM2 and ENST00000314392 with sensitivity to 
docetaxel, paclitaxel, vincristine and vinorelbine. c Periodic expression of DPM2 and ENST00000314392 in HeLa cells. d Periodic expression of DPM2 
and ENST00000314392 in MDA‑MB‑231 cells. ARHGAP29 rho‑type GTPase‑activating protein 29, KRT18 keratin 18, CLDN claudin, ATP1B1 ATPase 
 Na+/K+ transporting subunit beta 1, PPIC peptidyl‑prolyl cis–trans isomerase C, MYO5B myosin VB, PARD6B partitioning defective 6 homolog 
beta, LINC00857 long intergenic non‑protein coding RNA 857, NECTIN2 nectin cell adhesion molecule 2, TMED8 transmembrane P24 trafficking 
protein family member 8, SREBF2 sterol regulatory element binding transcription factor 2, RPL18AP3 ribosomal protein L18a pseudogene 3, RRP1B 
ribosomal RNA processing 1B, RBMX RNA binding motif protein X‑linked, AURKB aurora kinase B, RCC2 regulator of chromosome condensation 2, 
RPL13A ribosomal protein L13a, ANP32B acidic nuclear phosphoprotein 32 family member B, DOT1L DOT1 like histone lysine methyltransferase, 
DPM2 dolichyl‑phosphate mannosyltransferase polypeptide 2
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Fig. 8 Specific alternative splicing of DPM2 during mitosis and its clinical relevance. a Flow cytometry panels showing the cell cycle distribution of 
MDA‑MB‑231 cells arrested with nocodazole and actinomycin D. The X‑axis shows the time at which actinomycin D was added. b FPKM values of 
TOP2A, CCNA2, CENPF, and RAD9A under mitotic arrest. The long lines represent unarrested samples, and the short lines represent the samples with 
induced arrest by nocodazole and actinomycin D. The X‑axis represents the cell cycle phases. c ENST00000314392 FPKM values under mitotic arrest 
and unblocked conditions. d, e RFS curves of DPM2 transcriptional expression in breast cancer and triple‑negative breast cancer, respectively. FPKM 
fragments per kilobase of exon model per million mapped fragments, RFS relapse‑free survival
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Screening and identification of cell cycle-related tran-
scripts are scientifically and technically difficult. Due to 
the limitations of cell cycle synchronization and tran-
scriptome-related technology, such analyses have only 
partially been accomplished [9, 27]. Research on the 
function of periodic transcripts in the cell cycle in cancer 
cells is also important. To clarify such functions, a global 
and precise understanding of the dynamic expression of 
transcripts during the cell cycle has to be achieved, which 
will be valuable for distinguishing potential functional 
variations of the proteins translated from transcript vari-
ants of the same gene, as well as their significance in cell 
cycle regulation and cancer treatment.

When we investigated the utility of the periodic tran-
scripts in drug sensitivity evaluation, we first analyzed the 
utility of the corresponding genes in predicting  the sen-
sitivity to various targeted drugs and found that a large 
number of transcript isoforms had a stronger correlation 
with drug sensitivity than their corresponding genes. We 
analyzed the structures of some of the transcripts and 
found that some contain targeting domains of the drugs, 
while many of them do not. Some studies have found that 
splicing-regulated protein isoforms are closely related to 
drug evaluation [28, 29], but more functions of the tran-
scripts remain to be further explored.

In addition, we found that ribosome-related processes 
were major function in which the periodic transcripts 
were enriched. Whether this implies that systemic RNA 
alternative splicing occurs in a particular cell cycle 
phase-dependent manner (e.g., during nuclear mem-
brane rupture during mitosis, resulting in changes in the 
liquid-phase environment of related components such 
as splicing proteins) or that ribosomal function changes 
to accommodate systemic gene splicing (e.g., translation 
processes are shut down by splicing ribosome-associated 
RNAs) needs to be explored in further research [30, 31].

Conclusions
This study identified a panel of cell cycle-related periodic 
transcripts by assessing high-resolution phase-lapsed 
cell-cycle-synchronized transcriptomes. The host paren-
tal genes of most of the identified period transcripts 
are involved in cell cycle regulation, RNA splicing, and 
translation-related processes. We also found that the lev-
els of transcripts of drug target genes have different val-
ues in evaluating drug sensitivity. We identified a series 
of transcripts exemplified by ENST00000547281 and 
ENST00000314392 for the potential role in drug sensitiv-
ity assessment. Overall, this study increases our under-
standing of the mechanism underlying fine cell cycle 
regulation, shows new directions for the application and 
exploration of cell cycle-targeted tumor therapy, and 

provides novel insights into alternative splicing-related 
drug development and evaluation.
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