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What benefit can be obtained 
from magnetic resonance imaging diagnosis 
with artificial intelligence in prostate cancer 
compared with clinical assessments?
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Abstract 

The present study aimed to explore the potential of artificial intelligence (AI) methodology based on magnetic reso‑
nance (MR) images to aid in the management of prostate cancer (PCa). To this end, we reviewed and summarized the 
studies comparing the diagnostic and predictive performance for PCa between AI and common clinical assessment 
methods based on MR images and/or clinical characteristics, thereby investigating whether AI methods are generally 
superior to common clinical assessment methods for the diagnosis and prediction fields of PCa. First, we found that, 
in the included studies of the present study, AI methods were generally equal to or better than the clinical assessment 
methods for the risk assessment of PCa, such as risk stratification of prostate lesions and the prediction of therapeutic 
outcomes or PCa progression. In particular, for the diagnosis of clinically significant PCa, the AI methods achieved 
a higher summary receiver operator characteristic curve (SROC‑AUC) than that of the clinical assessment methods 
(0.87 vs. 0.82). For the prediction of adverse pathology, the AI methods also achieved a higher SROC‑AUC than that of 
the clinical assessment methods (0.86 vs. 0.75). Second, as revealed by the radiomics quality score (RQS), the studies 
included in the present study presented a relatively high total average RQS of 15.2 (11.0–20.0). Further, the scores of 
the individual RQS elements implied that the AI models in these studies were constructed with relatively perfect and 
standard radiomics processes, but the exact generalizability and clinical practicality of the AI models should be further 
validated using higher levels of evidence, such as prospective studies and open‑testing datasets.
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Background
Prostate cancer (PCa) is one of the most prevalent can-
cers among men, especially in the United States, with 
the highest incidence and second highest mortality rate  
[1–3]. In China, PCa has three epidemiological char-
acteristics. First, it ranks highest in the annual increase 
in both morbidity and mortality in men [4]. Second, the 
ratio of mortality to morbidity of PCa is higher than 
that in some Western countries [2–4]. Third, the pro-
portion of patients with high-risk advanced PCa is high 
due to limited prostate specific antigen (PSA) screening  
[1, 5]. Two challenges in PCa diagnosis and treatment 
are the precise diagnosis of PCa and the prediction of the 
therapeutic outcomes or PCa progression, which have 
attracted extensive interest from researchers [6–12].

Invasive biopsy is a common method used in clinical 
practice to monitor PCa [13–16]. However, the random-
ness of the needle position for biopsy sampling limits 
the ability of the biopsy to capture the spatial state of 
the lesions and therefore, leads to the omission of true 
tumors. Additionally, patients who undergo biopsies 
may have some reactions, such as bleeding, pain, infec-
tion, and even life-threatening sepsis in severe cases  
[16, 17]. On the other hand, medical imaging can provide 
a comprehensive macroscopic description of the tumor 
phenotype and peritumoral context, which can be a com-
pensatory and noninvasive approach to provide informa-
tion by quantifying tumor progression before, during, 
and after treatment [18, 19]. Therefore, characterization 
based on medical imaging is a practical method for quan-
tifying the heterogeneity of PCa and potentially facilitat-
ing the development of precision medicine.

Magnetic resonance imaging (MRI) is a common medi-
cal imaging methodology with high spatial resolution and 
can also describe different physiological and anatomical 
characteristics based on various sequences. For exam-
ple, T2-weighted imaging (T2WI) can describe the ana-
tomical structures of tumors and is, therefore, useful for 
delineating the profiles and appearances of suspicious 
lesions. Diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) maps derived from DWI can 
reflect the degree of random motion of water molecules 
related to the tumor’s aggressiveness. Additionally, the 
dynamic contrast-enhanced sequence can be used for the 
functional and physiological assessment of tumors with 
the guide of a gadolinium contrast agent. Further, com-
pared with computed tomography (CT) and positron 
emission tomography (PET), MRI has no radiation risk 
and has thus been widely used for tumor diagnosis and 
monitoring [15, 18, 20–24].

In clinical diagnosis, magnetic resonance (MR) images 
of prostate lesions are visually assessed according to the 
prostate imaging reporting and data system (PI-RADS) 

guidelines based on some visually quantitative features of 
lesions (e.g., location, shape, size, and intensity) [25, 26]. 
The visual assessment of MR images plays an important 
role in the diagnosis but has several limitations [6, 27–30].  
First, the visual assessment of MR images is greatly 
dependent on the high-level expertise of radiologists, 
leading to discrepancies in the assessment results. Sec-
ond, some features of MR images reflecting tumor heter-
ogeneities cannot be observed on the visual assessment. 
Third, the visual assessment is qualitative or semi-quan-
titative [26]. These limitations may lead to a decrease in 
the accuracy and robustness of PCa diagnoses.

Artificial intelligence (AI) is a data-driven method. In 
other words, after being trained with many samples, an 
AI model can automatically select the optimal feature 
pattern to accurately predict the novel samples. Thus, 
when AI methodology is used to analyze medical images 
of PCa, it can mine fine and deep information that may 
reflect relatively complete heterogeneities of the suspi-
cious lesions, regardless of whether this information is 
visually representable. Due to its advantages in analyzing 
medical images, AI methodology has been widely applied 
to aid in the diagnosis and treatment of PCa [12, 31–35] 
and other malignancies [13, 36–46]. Increasing evidence 
supports the ability of AI methods to facilitate precise 
diagnosis and treatment of tumors. In fact, some AI soft-
ware that can help identify PCa has been approved by 
the Food and Drug Administration (FDA). For example, 
ProstatlD software aims to interpret prostate MRI and 
assist radiologists in identifying suspicious PCa regions 
and analysing their likelihood of malignancy [47]. AI-Rad 
Companion Prostate MR software aims to assist the radi-
ologists in automatically segmenting prostate, estimating 
volume and manually delineating the location of lesions 
with MR images, which can be used to support the plan-
ning of biopsies [48]. Additionally, one AI software, i.e., 
Paige Prostate software, is developed with pathological 
images instead of MRI. This software is designed to aid 
pathologists in detecting suspicious areas on prostate 
biopsy images and further assessing the likelihood of 
malignancies [49].

The National Comprehensive Cancer Network 
(NCCN) reported that MRI could generally guide PCa 
monitoring [15]. In clinical practice, patients with 
PI-RADS scores 3−5 are recommended to undergo 
biopsies for further pathological confirmation [17]. 
However, patients with a PI-RADS score 3 are equivo-
cal in detecting clinically significant prostate cancer 
(csPCa). As a result, it may lead to low specificity and, 
therefore, overdiagnosis [6, 28, 30]. Additionally, accord-
ing to the NCCN, some patients are recommended 
to  undergo radical prostatectomy (RP) or other thera-
pies. However, some of these patients may have high 
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risks of the presence of adverse pathology (AP), disease 
recurrence, and subsequent metastasis [10, 50–53].  
Advance identification of these patients before treatment 
may be beneficial to their prognoses. To address these 
problems, many studies have constructed a variety of AI 
models for the diagnoses and treatments of PCa, such 
as the diagnosis of csPCa [54, 55], prediction of Gleason 
grade [56], prediction of biochemical recurrence (BCR) 
[57], and extracapsular extension (ECE) [58]. They have 
compared the performances of these models with those 
of visual assessments based on PI-RADS or other clini-
cal assessments. Currently, most of the published reviews 
focus on the analysis of the modeling processes and tasks 
of AI methods [59–61]. However, reviews comparing the 
performance between AI and clinical assessment meth-
ods are limited, though they can highlight the clinical 
value and potential of AI methodology to aid clinicians in 
precisely diagnosing PCa and predicting therapeutic out-
comes or progression of PCa.

To bridge this gap, in the present study, we focused on 
studies that reported results from both AI and clinical 
assessment methods. Then, we analyzed and summarized 
these studies, comparing the diagnostic and predictive 
performance for PCa between AI and common clinical 
assessment methods based on MR images and/or clinical 
characteristics, thereby exploring the potential of AI in 
the diagnosis and treatment of PCa. Specifically, we com-
pared the performance between AI and clinical assess-
ment methods for the diagnosis and prediction fields of 
PCa. In particular, we quantitatively compared the abili-
ties of these two methodologies to diagnose csPCa and 
predict AP. Additionally, the quality of the studies was 
assessed based on the radiomics quality score (RQS).

AI pipeline on the diagnosis and prediction fields 
of PCa
This study focused on two fields of AI application to PCa: 
the diagnosis field, which refers to the identification of 
malignant lesions and stratification of PCa risk; and the 
prediction field, which refers to the prediction of thera-
peutic outcomes or progression of PCa.

The pipeline of the process of the AI methodology 
includes several discrete steps: image acquisition and pre-
processing, model development, and model performance 
validation. Generally, there are two main approaches to 
developing AI models for medical imaging analysis: the 
hand-crafted radiomics method and the deep learning 
radiomics method (Fig. 1).

The hand-crafted radiomics method can provide a 
set of high-throughput features. Specifically, prostate 
lesions are first manually delineated in MR images. 
Then the features including shape, histogram, and tex-
tural features are extracted from the delineated lesions 

in the original MR images and their derived images 
(e.g., wavelet). The shape and histogram features refer 
to the metrics characterizing the shape (e.g., size, vol-
ume and flatness) and histogram (e.g., mean, entropy, 
and skewness), respectively. The textural features were 
extracted by the calculation matrixes reflecting the 
distribution of gray intensity, such as Gray Level Co-
occurrence Matrix, Gray Level Size Zone Matrix, and 
Gray Level Run Length Matrix. These extracted fea-
tures are fed into traditional machine learning mod-
els such as logistic regression, support vector machine 
(SVM), and random forests (RF) after a feature selec-
tion step, which finally outputs a quantitative score 
with a value ranging from zero to one, indicating the 
risk probability of adverse outcomes such as csPCa 
and BCR. Compared with the deep learning radiomics 
method, the hand-crafted radiomics method is sim-
ple owing to fewer parameters in traditional machine 
learning models and is, therefore, easier to achieve. 
Additionally, specific features have relatively evident 
semantic information, thereby increasing the interpret-
ability of the models [39]. However, it requires precise 
manual delineation of the tumor slice by slice, which is 
time-consuming, laborious, and can lead to subjective 
disagreements among different radiologists.

In contrast, the deep learning radiomics method can 
automatically extract the features of medical images 
without requiring the precisely manual delineation of 
lesions. Specifically, deep learning radiomics models 
have been constructed using various networks, such 
as ResNet [62], MobileNet [63], and ShuffleNet [64]. 
Deep learning radiomics models use original images 
or rectangular volumes of interest containing lesions 
as inputs, from which image features can be extracted 
directly through convolution operation of networks. 
Therefore, precise manual segmentation of lesions 
can be avoided. Similar to the hand-crafted radiom-
ics method, the deep learning radiomics models out-
put a value indicating the risk probability of adverse 
outcomes. Thus, the deep learning radiomics method 
is particularly suitable for the analysis of a large num-
ber of samples. Additionally, owing to multi-layer con-
struction, deep learning radiomics models can mine 
deep and subtle image information that can accurately 
characterize the heterogeneity of PCa, thereby show-
ing excellent performance for predicting adverse out-
comes. Both hand-crafted and deep learning radiomics 
methods can be used for the diagnosis and prediction 
fields of PCa. They can be employed alone or in com-
bination via the fusion of features or integration of 
models. In this study, AI models constructed based on 
the hand-crafted and deep learning radiomics methods 
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are referred to as hand-crafted (HC) and deep learning 
(DL) models, respectively.

Comparing the performances of AI and clinical 
assessment methods in the diagnosis field of PCa
The application of AI in diagnosis fields of PCa based on 
MR images has attracted extensive interest. In clinical 
practice, diagnostic tasks for PCa mainly include the risk 
stratification of prostate lesions, such as PCa detection 
(i.e., the discrimination between benign and malignant 
lesions) and csPCa detection (i.e., the discrimination 
between non-csPCa and csPCa). According to the Inter-
national Society of Urological Pathology Gleason grade 
group (GGG), patients with GGG < 1 and GGG ≥ 1 were 
defined as having benign and malignant lesions, respec-
tively. Patients with GGG < 3 and GGG ≥ 3 [18] (or 
GGG < 2 and GGG ≥ 2 [54]) were defined as having non-
csPCa and csPCa, respectively. Table  1 [31, 54, 65–84] 
listed the studies for the diagnosis field of PCa, which 
were included in the present study.

Comparing the performances of AI and clinical assessment 
methods for csPCa diagnosis
In clinical practice, patients with a high risk of csPCa 
assessed using MRI are recommended to undergo biop-
sies for further pathological confirmation. Therefore, 
accurate identification of csPCa candidates can help to 
reduce unnecessary biopsies. Figure 2a and b shows rep-
resentative examples of patients with non-csPCa and 
csPCa, respectively. MRI interpretation following the 
PI-RADS guidelines has been used as a common clini-
cal assessment method for csPCa diagnosis. Thus, most 
studies have compared the performance of AI methods 
with that of radiologists’ interpretations of PI-RADS.

Some studies reported that AI models achieved per-
formances similar to or better than those of clinical PI-
RADS assessments (Table 1). Winkel et al. [65] proposed 
several HC models based on quantitative radiomics fea-
tures. All models outperformed the PI-RADS assess-
ment for the detection of csPCa in the peripheral zone 
(PZ). Dinh et  al. [66] trained a computer-aided diagno-
sis system to identify csPCa in the PZ based on hand-
crafted radiomics features, which achieved comparable 

Fig. 1 Pipeline of the classification process of artificial intelligence. There are three discrete steps in the pipeline: inputting images (i.e., image 
acquisition and pre‑processing), model development, and model performance validation. Generally, there are two main approaches to developing 
AI models: the hand‑crafted radiomics method and the deep learning radiomics method. For the hand‑crafted radiomics model, there are four 
steps: annotation, feature extraction, feature selection and modeling with traditional machine learning methods. For the deep learning radiomics 
model, the images can be fed into the end‑to‑end model to output the risk probability of adverse outcomes. ADC apparent diffusion coefficient, 
AUC area under the receiver operating characteristic curve, DWI diffusion‑weighted imaging, LASSO least absolute shrinkage and selection 
operator, LR logistic regression, RFE recursive feature elimination, T2WI T2‑weighted imaging, SVM support vector machine
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performance to those of experienced radiologists and 
higher performance than those of less-experienced radi-
ologists. Schelb et al. [54] used a DL model [i.e., a two-
dimensional (2D) U-Net] trained with bi-parametric MRI 
(bpMRI) to achieve automatic segmentation and csPCa 
detection. The U-Net showed good agreement with the 
PI-RADS assessment by comparing the sensitivities and 
specificities. Similarly, Netzer et  al. [67] confirmed that 
2D U-Net could achieve a performance similar to that 

of PI-RADS assessment for the identification of csPCa. 
Zhong et  al. [68] indicated that a DL model (i.e., a 2D 
ResNet) that used a transfer-learning method could dis-
tinguish indolent from csPCa lesions based on bpMRI, 
achieving a comparable performance to that of PI-RADS 
assessment. Deniffel et  al. [69] used a DL model [i.e., a 
shallow 3D convolutional neural network (CNN)] based 
on bpMRI to diagnose csPCa. They revealed that the 
model resulted in fewer unnecessary biopsies compared 

Table 1 Baseline characteristics of studies in the diagnosis field of prostate cancer

AI artificial intelligence, csPCa clinically significant prostate cancer, DL(2D) deep learning model based on two-dimensional networks, DL(3D) deep learning model 
based on three-dimensional networks, HC hand-crafted, PCa prostate cancer, PZ peripheral zone, PSA prostate specific antigen, TZ transition zone
# Comparison between AI and clinical assessment methods
† Diagnostic models based on clinical characteristics

No. Study ID Years Country Diagnosis task Number 
of 
centers

Number 
of 
patients

AI methods Clinical assessment 
methods

Comparison#

1 Hiremath et al. [31] 2021 USA csPCa 5 592 DL(2D) Expert reader >

Expert reader and clini‑
cal  characteristics†

>

2 Schelb et al. [54] 2019 Germany csPCa 1 312 DL(2D) Expert reader ≈
3 Winkel et al. [65] 2020 Switzerland csPCa 1 201 HC Expert reader > (PZ)

4 Dinh et al. [66] 2018 France csPCa 2 235 HC Expert reader ≈ (PZ)

Less‑experience > (PZ)

5 Netzer et al. [67] 2021 Germany csPCa 2 1488 DL(2D) Expert reader ≈
6 Zhong et al. [68] 2019 USA csPCa 1 140 DL(2D) Expert reader ≈
7 Deniffel et al. [69] 2020 Canada csPCa 1 499 DL(3D) Expert reader >

Expert reader and PSA 
 density†

>

8 Liu et al. [70] 2021 USA csPCa 1 402 HC, DL(3D) Expert reader >

9 Zhao et al. [71] 2023 China csPCa, PCa 7 1861 DL(3D) Expert reader ≈
10 Youn et al. [72] 2021 Korea csPCa 1 121 DL(3D) Expert reader <

Less‑experience ≈
Residents >

11 Yu et al. [73] 2023 China csPCa 4 1540 DL(2D) General radiologist > (internal)

General radiologist ≈ (external)

Expert reader <

12 Hectors et al. [74] 2021 USA csPCa 1 240 HC PSA  density† >

Prostate  volume† >

13 Hou et al. [75] 2020 China csPCa 1 263 HC Expert reader >

14 Wang et al. [76] 2017 China PCa 1 54 HC Expert reader > (TZ)

Expert reader ≈ (PZ)

15 Li et al. [77] 2021 China PCa 1 203 HC Expert reader ≈
16 Song et al. [78] 2018 China PCa 1 195 DL(2D) Reader >

17 Aussavavirojekul et al. 
[79]

2022 Thailand PCa 1 101 HC Reader >

18 Kan et al. [80] 2020 China PCa 2 346 HC Expert reader >

19 Antonelli et al. [81] 2019 UK Gleason pattern 4 1 164 HC Expert reader >

20 Niu et al. [82] 2018 China High grade 1 184 HC Reader >

21 Algohary et al. [83] 2020 USA D’Amico 4 231 HC Reader >

22 Zhang et al. [84] 2019 China Risk 1 59 HC Clinical  characteristics† >
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to clinical assessment methods [e.g., PI-RADS-only 
assessment or the combination of PI-RADS assessment 
and PSA density (PSAD)]. Hiremath et al. [31] developed 
an integrated nomogram combining 2D deep learning, 
PI-RADS, and clinical characteristics, using a logistic 
regression method to identify csPCa. They found that 
the nomogram outperformed the PI-RADS assessment 
and a diagnostic model based on the combination of PI-
RADS and clinical characteristics for diagnosing csPCa. 
Liu et al. [70] combined hand-crafted radiomics features 
and a deep learning method to diagnose csPCa by inte-
grating a 3D gray-level co-occurrence matrix extractor 
into a deep learning network. The model was superior to 
PI-RADS assessment for detecting csPCa. Zhao et al. [71] 
developed 3D DL models based on multi-center bpMRI 
for diagnosing csPCa, which showed comparable per-
formance to PI-RADS assessments of expert-level radi-
ologists. Further, the integrated model combining the DL 
signature and PI-RADS assessment score achieved higher 
or equal area under the receiver operating characteristic 
curve (AUC) and greatly increased the specificity com-
pared to PI-RADS assessment in the diagnosis of csPCa.

However, two recent studies reported decreased per-
formance of a DL model for diagnosing csPCa compared 
to radiologists’ assessments. Specifically, Youn et al. [72] 
found that, for the diagnosis of csPCa, the AUC of the DL 
method was similar to that of less-experienced radiolo-
gists but lower than that of experts. However, the sensi-
tivity and specificity of the DL model were comparable 
to those of experts at a threshold PI-RADS score ≥ 4.  
Yu et al. [73] developed a DL model that segmented pros-
tate lesions automatically and diagnosed caPCa, whose 
performance was comparable or superior to general 
radiologists, but inferior to expert-level radiologists in 
diagnosing csPCa. Additionally, some other studies also 
developed the two-stage DL models including automatic 
lesion segmentation and diagnosis, though they did not 
compare their respective models with clinical assess-
ment [85–87]. These studies suggested that automatic 
delineation of prostate lesions is of vital importance to 
reduce the burden on radiologists and improve diagnos-
tic accuracy.

Some recent studies using AI methods focused on the 
diagnosis of csPCa in lesions with a PI-RADS score 3 

Fig. 2 Representative examples of patients with prostate cancer. a Patient with non‑csPCa; b patient with csPCa; c patient with ECE; d patient 
with LNI. The colorbar indicates the gray intensity of corresponding voxel in each sub‑figure. The hot and cold colors indicate the strong and weak 
gray intensity, respectively. The red arrow points to the location of the lesion region. csPCa clinically significant prostate cancer, ECE extracapsular 
extension, LNI lymph node involvement
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because they were equivocal for detecting csPCa [25, 26].  
For example, Hectors et al. [74] constructed an HC model 
to identify csPCa in lesions with a PI-RADS score 3. The 
model achieved a higher AUC than the diagnostic model 
based on clinical characteristics (e.g., PSA density or 
prostate volume). Hou et al. [75] developed an HC model 
to diagnose csPCa from lesions with a PI-RADS score 3. 
The model showed better performance than the reassess-
ment results of expert radiologists.

The diagnosis of csPCa is a typical task in the diagnosis 
field of PCa, accounting for the largest proportion of the 
included studies (Table 1). For further comparison of the 
performance between AI and clinical assessment meth-
ods in csPCa diagnosis, we calculated the area under the 
summary receiver operator characteristic curve (SROC-
AUC), pooled sensitivity, and pooled specificity of these 
two methods for csPCa diagnosis among the above-men-
tioned studies. The pooled sensitivity and specificity of 
each method (i.e., AI and clinical assessment) were calcu-
lated based on the summation of the true positive (TP), 
false positive (FP), false negative (FN), and true negative 
(TN) across all included studies about csPCa diagnosis 
(Table 1). As summarized in Table 2, the AI methods of 
the studies on csPCa diagnosis presented an SROC-AUC 
of 0.87, a pooled sensitivity of 0.90, and a pooled specific-
ity of 0.60. In contrast, the clinical assessment methods 
of all studies of csPCa diagnosis presented an SROC-
AUC of 0.82, a pooled sensitivity of 0.93, and a pooled 
specificity of 0.46. Compared with clinical assessment 
methods, AI methods achieved higher specificity with 
slight decrease in sensitivity. Additionally, in terms of 
SROC-AUC, the AI methods were superior to the clinical 
assessment methods.

In general, the total performance of AI methods was 
better than that of clinical assessments for the studies on 

csPCa diagnosis. Specifically, for the studies on csPCa 
diagnosis, AI methods showed higher specificity but 
slightly less sensitivity compared to clinical assessment 
methods. In these studies, the clinical assessment meth-
ods showed a ceiling-approximate pooled sensitivity but 
a very low pooled specificity. Thus, the advantages of AI 
methods are mostly observed in the improved specificity 
of csPCa diagnosis. Notably, in both studies and clini-
cal practice, PI-RADS is a common guideline for csPCa 
diagnosis based on medical images [26], which has been 
reported to have a low specificity [6]. Thus, the com-
parison results of these studies revealed that AI methods 
could improve the specificity of csPCa diagnosis, thereby 
reducing unnecessary confirmatory biopsies.

Comparing the performances of AI and clinical assessment 
methods for PCa diagnosis
In clinical practice, misidentifying benign as malig-
nant lesions in patients will cause anxiety and unneces-
sary trauma. Thus, accurately discriminating between 
benign (e.g., prostatic hyperplasia and inflammation) 
and malignant prostate lesions is crucial. MRI interpreta-
tion following the PI-RADS guidelines has been used as 
a common clinical assessment method for PCa diagnosis 
[25, 26]. Thus, most studies have compared the perfor-
mance between AI methods and radiologists’ interpreta-
tion of PI-RADS.

Several studies have reported that AI models can aid 
radiologists in PCa diagnosis by improving their visual 
assessments (Table 1). Wang et al. [76] reported that an 
HC model could improve the performance of PI-RADS 
assessment in diagnosing PCa, especially for lesions in 
the transitional zone (TZ). Li et  al. [77] found that the 
difference of AUC between HC model and PI-RADS 
was insignificant. However, the integration of HC model 

Table 2 Comparison of AI and clinical assessment methods in the diagnosis field of PCa

AI artificial intelligence, csPCa clinically significant prostate cancer, DL deep learning, HC hand-crafted, PCa prostate cancer, PI-RADS prostate imaging reporting and 
data system, SROC-AUC  area under the summary receiver operating characteristic curves
* Performance indexes pooled across the studies on csPCa diagnoses

Comparison AI methods Clinical assessment methods

HC model DL model

Overall performance Relatively high Relatively poor

SROC‑AUC * 0.87 0.82

Pooled  sensitivity* 0.90 0.93

Pooled  specificity* 0.60 0.46

Qualitative or quantitative Quantitative Semi‑quantitative

Expert dependence Moderate Low High

Consistency High Low

Manual delineation Yes No No

Features High‑throughput features extracted 
using specific algorithms (e.g., shape, 
histogram, and textural features)

Automatic extraction of deep and 
subtle image features using networks 
with substantial parameters

Features for visual assessments (e.g., 
location, shape, size, and intensity) and 
some clinical characteristics
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and PI-RADS better diagnosed PCa than the PI-RADS 
assessment. Song et  al. [78] reported that a joint model 
of DL and PI-RADS assessment outperformed either 
the DL model or PI-RADS assessment in diagnosing 
PCa. Zhao et al. [71] developed 3D DL models based on 
multi-center bpMRI for diagnosing PCa, which showed 
comparable performance to PI-RADS assessments of 
expert-level radiologists. Additionally, both Aussava-
virojekul et  al. [79] and Kan et  al. [80] constructed HC 
models to detect PCa from lesions with a PI-RADS score 
3, achieving specificities of 72% and 50%, respectively. It 
should be noted that in these two studies (i.e., [79] and 
[80]), equivocal lesions with PI-RADS score 3 were con-
firmed by biopsies. Thus, the AI methods in these stud-
ies can aid decision-making regarding whether a lesion 
with a PI-RADS score 3 should undergo biopsy confir-
mation. Further, Luo et al. [88] reported that an AI-based 
image reconstruction algorithm might increase the MRI 
resolution and thereby improve the display effect, aiding 
in a better identification of PCa from benign prostatic 
hyperplasia.

Comparing the performances of AI and clinical assessment 
methods for other diagnostic tasks for risk stratification 
of PCa
In addition to diagnosing PCa and csPCa, AI methods 
have been used to aid other diagnostic tasks for risk 
stratification of PCa. Several studies have reported that 
AI models can aid radiologists in improving their vis-
ual assessments of other diagnostic tasks (Table  1). For 
example, Antonelli et al. [81] found that an HC method 
showed better performance in recognizing lesions with 
Gleason pattern 4 than three board-certified radiolo-
gists’ assessments. Niu et  al. [82] reported that an HC 
model could detect high-grade PCa and performs better 
than PI-RADS assessment. Algohary et al. [83] developed 
an HC model combining peritumoral and intratumoral 
radiomics features to accurately stratify PCa risk that 
was defined by the D’Amico Risk Classification System, 
resulting in higher accuracy compared to the PI-RADS 
assessment. Zhang et al. [84] used the logistic regression 
method combining hand-crafted radiomics features and 
clinical characteristics to differentiate between high- and 
low-grade PCa, which outperformed the diagnosis model 
based on clinical characteristics.

Summary of the comparison between AI and clinical 
assessment methods in the diagnosis field of PCa
Table 2 summarized the differences between AI and clin-
ical assessment methods for the diagnosis field of PCa. 
First, AI methods achieved a better overall performance 
than that of clinical assessments of radiologists for the 
diagnosis of PCa. In particular, for the detection of csPCa, 

the SROC-AUC and pooled specificity of AI methods 
were both higher than those of the clinical assessment 
methods. Further, different from the clinical assessment 
methods, the AI methods provided a quantitative result, 
which relied much less on the individual expertise of 
radiologists and thereby could achieve consistent diagno-
sis results. The better performance of AI compared with 
clinical assessment methods was because the former can 
mine subtle and deep information of MR images of PCa, 
which was not accessible by common clinical assessment 
methods. Though the HC methods required precisely 
manual delineations of prostate lesions, the DL methods 
achieved an automatic image-to-decision diagnosis.

Because the image features and clinical features include 
different information for characterizing prostate lesions, 
the combination of the clinical characteristics and the AI 
models based on MR images improves the performance 
of diagnosing PCa (e.g., [31, 71]). As shown in Fig. 3a, for 
the integrated AI models included in the present study, 
the clinical characteristics of PSA/PSAD, PI-RADS, and 
prostate volume were frequently combined with the AI 
models.

Additionally, in some of the included studies, AI mod-
els were trained and tested using a large number of sam-
ples from two- or multi-centers [31, 66, 67, 71, 73, 80, 83],  
demonstrating, to some degree, the potential robust-
ness and generalization of these models in the diagnosis 
field of PCa. These findings suggest that AI models may 
effectively aid radiologists in improving the diagnosis 
field of PCa. Furthermore, as in most studies, PI-RADS 
is a common clinical assessment method for the diagno-
sis field of PCa in clinical practice. However, as a semi-
quantitative scoring system, PI-RADS is associated with 
low specificity in the diagnosis field of PCa [6], leading 
to unnecessary confirmation using biopsies [18]. Thus, 
the combination of AI models and PI-RADS assessment 
potentially reduces over-biopsies by improving specificity 
in the diagnosis field of PCa.

However, these studies had several limitations regard-
ing the AI-assisted diagnosis of PCa. First, although two- 
or multi-center samples were used in a few studies, most 
employed small and monocenter patient cohorts. Thus, 
the generalizability of the proposed AI models for the 
diagnosis field of PCa requires further validation. Sec-
ond, most deep learning radiomics models for PCa diag-
nosis were constructed based on a 2D CNN. However, 
for models with 2D CNN, the final patient-level output 
results are usually the average of the predicted values 
of multiple slice images without considering the spatial 
relationship between slices [89]. Three-dimensional (3D) 
CNN can fully utilize spatial information and achieve 
accurate patient-level prediction. Thus, 3D deep-learn-
ing radiomics models should be used in future research. 
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Third, some studies used independent external validation 
cohorts to evaluate model performance; however, they 
were generally retrospective. Therefore, these models 
should be validated using prospective data. Finally, HC 
models still require precise manual annotation, which is 
time-consuming and laborious, and requires automatic 
annotation for PCa lesions.

In general, when applied to the analysis of medical 
images, AI methods present advantages over clinical 
assessments in various aspects, such as the high-through-
put extraction of image information, overall characteriza-
tion of lesion heterogeneity, and multi-variable analysis 
of image features. Thus, it was not unexpected that the AI 
methods outperformed the clinical assessment methods 
in the diagnosis field of PCa. The advantages of AI meth-
ods over clinical assessment methods are highly consist-
ent with studies on other tumors, such as breast cancer 
[90, 91], brain tumor [92], renal cancer [93], and cervi-
cal cancer [94], suggesting that AI methods are potential 
tools to aid in the precise diagnosis of PCa.

Comparing the performances of AI and clinical 
assessment methods in the prediction field of PCa
AI methodology has been widely utilized to aid in the 
prediction fields of PCa. In clinical practice, the pre-
diction tasks mainly include predicting lymph node 
involvement (LNI), ECE, postoperative BCR, and other 
events. Table 3 [57, 58, 95–108] listed the studies for the 

prediction field of PCa, which were included in the pre-
sent study.

Comparing the performances of AI and clinical assessment 
methods for AP prediction
AP features (e.g., ECE and LNI) are known to be impor-
tant predictors of tumor metastasis, and therefore, 
accurate prediction of the presence of AP features can 
significantly aid in treatment decisions (e.g., planning of 
personalized surgical treatment) [10, 15]. Figure  2c and 
d show representative examples of patients with ECE and 
LNI, respectively. In clinical practice, radiologists’ inter-
pretations and nomograms based on clinical character-
istics (e.g., PSA level, Gleason grade, and positive biopsy 
cores) are commonly used as clinical assessment methods 
to predict AP. Thus, most studies have compared the per-
formance between AI methods and radiologists’ interpre-
tations or nomograms based on clinical characteristics.

Several studies have reported that the performance 
of AI models is equal to or better than that of clinical 
assessment methods (Table 3). Hou et al. [58] developed 
a DL model that contained an attention map of experts’ 
prior knowledge to detect ECE. It showed better perfor-
mance than radiologists’ interpretations. The study also 
reported that the performance of radiologists’ interpre-
tations in ECE prediction was improved with the assis-
tance of the DL model. Xu et al. [95] built an HC model 
to predict ECE that outperformed a prediction model 
combining clinical and pathological characteristics. Ma 

Fig. 3 Frequencies with which the clinical features were combined with AI models based on MRI in the diagnosis (a) and prediction (b) field of 
PCa. ADC apparent diffusion coefficient, AI artificial intelligence, D‑max the lesion maximum cross‑sectional diameter, MR magnetic resonance, 
MRI‑ECE MRI‑based extracapsular extension, MRI‑LNI MRI‑based lymph node involvement, MRI‑SVI MRI‑based seminal vesicle invasion, PCa prostate 
cancer, PI‑RADS prostate imaging reporting and data system, PSA prostate specific antigen, PSAD prostate specific antigen density
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et  al. [96] also constructed an HC model to predict the 
presence of ECE that outperformed radiologists’ inter-
pretations. Additionally, some studies have reported that 
prediction models combining radiomics features and 
clinical characteristics achieved excellent performance. 
For example, Bai et al. [97] constructed a logistic regres-
sion model combining peritumoral hand-crafted radiom-
ics features and clinical characteristics to predict ECE. 
The model achieved comparable or better performance 
than a prediction model based on clinical characteristics. 
Bourbonne et  al. [98] proposed a DL model combining 
hand-crafted radiomics features and clinical characteris-
tics to predict LNI in PCa patients. The model provided a 
higher C-index than other clinical nomograms [i.e., Par-
tin, Roach, Yale, and Memorial Sloan Kettering Cancer 
Center (MSKCC)]. Hou et  al. [99] selected 18 features, 
including hand-crafted radiomics features and clinical 
characteristics, and developed several models (i.e., logis-
tic regression, SVM, and RF) to predict LNI. The predic-
tive performances of these models were superior to those 
of the MSKCC nomogram. Hou et  al. [100] used an RF 

model combining clinicopathological factors, radiolo-
gists’ interpretations, hand-crafted radiomics features, 
and deep learning radiomics features to predict LNI. The 
performance of the model was superior to those of the 
MSKCC, Briganti and any other model based on a single 
type of characteristic or a combination of the two types 
of characteristics in the internal and external testing 
cohorts. Li et al. [101] developed a nomogram combining 
hand-crafted radiomics and clinicopathologic features to 
predict the presence of AP of PCa. The nomogram out-
performed the Cancer of the Prostate Risk Assessment 
(CAPRA) and the Decipher test for predicting the pres-
ence of AP.

AP prediction is a common task in the prediction 
field of PCa accounting for the largest proportion of the 
included studies (Table 3). For further comparison of the 
performance between AI and clinical assessment meth-
ods in AP prediction, we calculated the SROC-AUC, 
pooled sensitivity, and pooled specificity of these two 
methods among the above-mentioned studies. As sum-
marized in Table  4, the AI methods for AP prediction 

Table 3 Baseline characteristics of studies in the prediction field of prostate cancer

AI artificial intelligence, AP adverse pathology, BCR biochemical recurrence, CAPRA Cancer of the Prostate Risk Assessment, DL(2D) deep learning model based on 
two-dimensional networks, ECE extracapsular extension, GGG  Gleason grade group, HC hand-crafted, LNI lymph node involvement, MSKCC Memorial Sloan Kettering 
Cancer Center, NCCN National Comprehensive Cancer Network, PSA prostate specific antigen, PRECISE Prostate Cancer Radiological Estimation of Change in Sequential 
Evaluation
# Comparison between AI methods and clinical assessment methods
† Predictive models based on clinical characteristics

No. Study ID Years Country Prediction task Number 
of 
centers

Number 
of 
patients

AI methods Clinical assessment 
methods

Comparison#

1 Yan et al. [57] 2021 China BCR 3 485 HC, DL(2D) CAPRA‑S/NCCN/GGG >

2 Hou et al. [58] 2021 China ECE 2 849 DL(2D) Expert reader >

3 Xu et al. [95] 2020 China ECE 1 95 HC Clinical and pathological 
 characteristics†

>

4 Ma et al. [96] 2019 China ECE 1 210 HC Reader >

5 Bai et al. [97] 2021 China ECE 2 284 HC Clinical  characteristics† < (internal)
≈ (external)

6 Bourbonne et al. [98] 2021 France LNI 1 280 HC, DL(2D) Partin/Roach/Yale/
MSKCC/…

>

7 Hou et al. [99] 2019 China LNI 1 248 HC MSKCC >

8 Hou et al. [100] 2021 China LNI 2 401 HC, DL(2D) MSKCC/Briganti/… >

9 Li et al. [101] 2021 USA AP, BCR 4 198 HC CAPRA/Decipher/
CAPRA‑S

>/≈

10 Bourbonne et al. [102] 2020 France BCR 2 195 HC Clinical  characteristics† >

11 Sushentsev et al. [103] 2022 UK Progressing 1 64 HC PRECISE ≈
12 Xie et al. [104] 2021 China Upgrade 1 59 HC Biopsy >

13 Zhang et al.[105] 2020 China Upgrade 1 166 HC Clinical  characteristics† >

14 Wu et al. [106] 2017 China Upgrade 1 46 HC Clinical  characteristics† >

15 Zheng et al. [107] 2021 USA Biopsy results 1 330 HC PSA  density† >

16 Wang et al. [108] 2018 China Organ‑confined Pca 1 541 HC Partin >
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presented an SROC-AUC of 0.86, a pooled sensitivity 
of 0.75, and a pooled specificity of 0.84. In contrast, the 
clinical assessment methods of AP feature prediction 
presented an SROC-AUC of 0.75, a pooled sensitivity 
of 0.68, and a pooled specificity of 0.79. In terms of the 
above performance indexes, AI methods were superior to 
clinical assessment methods.

Comparing the performances of AI and clinical assessment 
methods for BCR prediction
In clinical practice, patients with BCR after RP or other 
therapies may present more advanced disease, distant 
metastasis, and even death [52]. Thus, early identification 
of BCR can help to make treatment decisions.

Recently, AI has been widely used for BCR prediction 
[57, 101, 102, 109, 110]. Several studies have compared AI 
and clinical assessment methods and demonstrated that 
the performance of AI models is better than that of clini-
cal assessment methods for BCR prediction (Table 3). For 
example, Yan et al. [57] extracted hand-crafted radiomics 
features and developed a DL model to predict BCR after 
RP with MR images, which outperformed other clinical 
assessment methods (e.g., CAPRA-S score, NCCN model, 
and Gleason grade group systems). Li et al. [101] devel-
oped a nomogram combining hand-crafted radiomics  
features and clinicopathologic features to predict the  
post-surgical BCR of PCa. The nomogram yielded a higher 
C-index than CAPRA and Decipher and was equal to  
CAPRA-S for the prediction of BCR. Bourbonne et al. [102]  
trained an HC model to predict the BCR for high-risk 
PCa, which outperformed other prediction models based 
on clinical characteristics.

Comparing the performances of AI and clinical assessment 
methods for other predictive tasks for PCa prognosis
In addition to predicting AP and BCR, AI methods have 
been used to aid other predictive tasks for PCa. Several 
studies have reported that the performance of AI mod-
els is equal to or better than that of clinical assessment 
methods for other predictive tasks (Table 3). For exam-
ple, Sushentsev et  al. [103] developed an HC model 
for predicting PCa progression in patients undergoing 
active surveillance. The model’s performance was com-
parable to that of the clinical assessment method [i.e., 
Prostate Cancer Radiological Estimation of Change 
in Sequential Evaluation (PRECISE)]. Xie et  al. [104]  
extracted textural features from ADC maps and devel-
oped HC models to predict pathological upgrading 
from biopsy to RP. These models showed excellent per-
formance, suggesting that they can improve the diag-
nostic accuracy of biopsy and avoid missed detection 
of high-grade PCa. Zhang et  al. [105] built a logistic 
regression model combining hand-crafted radiomics 
features and clinical characteristics to predict upgrad-
ing from biopsy to RP. It outperformed the prediction 
model based on clinical characteristics including clini-
cal stage and time from biopsy to RP. Wu et  al. [106]  
developed a logistic regression model combining dif-
fusion kurtosis imaging and PSA to predict upgrad-
ing after RP. It outperformed other prediction 
models based on clinical characteristics. Zheng et al. [107]  
trained an SVM model combining hand-crafted radi-
omics features and clinical characteristics to predict 
biopsy results for patients with negative MRI findings. 
The proposed model was superior to PSA density-based 

Table 4 Comparison of AI and clinical assessment methods in the prediction field of PCa

AI artificial intelligence, AP adverse pathology, DL deep learning, HC hand-crafted, PCa prostate cancer, PSA prostate specific antigen, SROC-AUC  area under the 
summary receiver operator characteristic curves
* Performance indexes pooled across the studies of AP prediction

Comparison AI methods Clinical assessment methods

HC model DL model

Overall performance Relatively high Relatively poor

SROC‑AUC * 0.86 0.75

Pooled  sensitivity* 0.75 0.68

Pooled  specificity* 0.84 0.79

Qualitative or quantitative Quantitative Quantitative/qualitative

Expert dependence Moderate Low High

Consistency High Moderate

Manual delineation Yes No No

Features High‑throughput features extracted 
using specific algorithms (e.g., shape, 
histogram and textural features)

Automatic extraction of deep and 
subtle image features using networks 
with substantial parameters

Clinical characteristics (e.g., PSA, Gleason 
grade and positive biopsy cores) or 
features for visual assessments (e.g., loca‑
tion, shape, size, and intensity)
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risk assessment. Wang et  al. [108] developed an SVM 
model combining clinical characteristics (i.e., age, PSA, 
clinical stage, and biopsy Gleason score) and MRI find-
ings (i.e., tumor location, PI-RADS scores, diameter, 
and 6-point MRI stage) for the prediction of organ-
confined PCa, which outperformed the clinical assess-
ment method (i.e., Partin table).

Summary of the comparisons between AI and clinical 
assessment methods in the prediction field of PCa
Table  4 summarized the differences between AI and 
clinical assessment methods for the prediction field of 
PCa. First, AI methods achieved a better overall perfor-
mance than that of clinical assessments of radiologists for 
the prediction of PCa. In particular, for the prediction of 
AP presence, all the SROC-AUC, pooled sensitivity and 
pooled specificity of AI methods were higher than those 
of the clinical assessment methods. Although both AI 
and clinical assessment methods can provide a quanti-
tative result, the former rely much less on the individual 
expertise of radiologists and thereby could achieve con-
sistent prediction results. Additionally, the AI methods 
can extract high-throughput features and subtle infor-
mation, the majority of which were not accessible by the 
clinical assessment methods.

Like those in the diagnosis field of PCa, the integrated 
AI models combing the AI models based on MR images 
and clinical characteristics achieved an increased per-
formance for the prediction of PCa (e.g., [100, 101]). As 
shown in Fig. 3b, for the integrated AI models included 
in the prediction field, the clinical characteristics of PSA/
PSAD, biopsy Gleason score, age, clinical stage (C-stage), 
positive biopsy cores, and PI-RADS were frequently 
combined with the AI models.

Overall, studies in the prediction field of PCa mostly 
focused on the prediction of LNI, ECE, BCR, and 
pathological upgrading from biopsy to RP. All above-
mentioned studies reported better or comparable per-
formances of AI models compared to those of clinical 
assessment methods. In particular, in some of these stud-
ies, the AI models were tested using an external testing 
cohort [57, 58, 97, 100–102], demonstrating, to some 
degree, the potential robustness and generalization of 
these models in clinical application to the prediction 
field of PCa. These findings suggest that AI models may 
effectively improve preoperative prediction performance 
and assist clinicians in making treatment decisions. Fur-
thermore, as in some studies, some risk assessment tools, 
such as Partin tables, MSKCC nomogram, and CAPRA 
score, showed moderate predictive performance on vali-
dation [57, 98, 100, 101]. Additionally, most of studies 
employed HC models as prediction methods, the num-
ber of which was much larger than that of studies using 

DL models. Furthermore, all studies using DL models 
employed 2D CNN without considering the 3D spatial 
information of tumors.

In clinical practice, radiologists’ interpretations and 
nomograms, such as CAPRA scores and MSKCC nom-
ograms, are commonly used to predict therapeutic 
outcomes. These nomograms integrated multiple clin-
icopathological features, such as PSA, Gleason grade, 
and positive biopsy cores, but failed to account for tumor 
heterogeneity, resulting in relatively poor performance. 
MRI can visually and comprehensively describe the char-
acteristics and morphology of tumors associated with 
tumor aggressiveness and progression [15]. However, 
MRI interpretation based on some evidently visual fea-
tures of lesions (e.g., size, location, and intensity) requires 
a high level of expertise by radiologists, leading to inter-
observer variability. Furthermore, lesions with low vol-
umes may be missed in visual assessments, and various 
invisible features (e.g., subtly textural and advanced 
features) have also been associated with PCa aggres-
siveness and progression. In contrast, AI methods can 
automatically extract features from images, reducing the 
dependence on the high-level expertise of radiologists. 
Additionally, AI methods can extract visible features and 
mine invisible high-throughput information, thus over-
coming the limitations of radiologists’ interpretations. 
The advantages of AI methods over clinical assessment 
methods were highly consistent with those of studies on 
other tumors, such as breast cancer [36, 90], brain tumor  
[92, 111, 112], rectal cancer [37, 113, 114], gastric cancer 
[41, 114, 115], colon cancer [116], lung cancer [117–119], 
and cervical cancer [120, 121], suggesting that AI meth-
ods are potential tools to aid the precise prediction of 
PCa.

RQS assessment
The RQS assessment [122] was performed for all 
included studies in both diagnosis (Table  1) and pre-
diction (Table 3) fields of PCa of the present study. The 
RQS assessments were conducted independently by 
two reviewers. The disagreement between the review-
ers was resolved by discussion until achieving an agree-
ment. These studies presented a total average RQS of 
15.2 (11.0–20.0) with a total average RQS ratio of 42.2%, 
which was defined as the ratio of the total average RQS 
to the full points (i.e., 15.2/36). This total average RQS 
ratio is higher than those of some recent radiomics stud-
ies [123–125] (average RQS ratio: 14.3–29.6%). The RQS 
ratio of each RQS element was defined as the ratio of 
the average RQS across all included studies to the full 
points for the corresponding element, which reflected 
the degree to which all included studies met the require-
ments of the corresponding RQS element. When the RQS 
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elements were sorted in descending order of their RQS 
ratios, they were divided into four levels by three evident 
cutoffs: excellent, good, poor, and very poor (Fig. 4).

As shown in Fig.  4, the excellent elements (i.e., RQS 
ratio = 97.4–100.0%) included “feature reduction or 
adjustment for multiple testing”, “comparison to gold 
standard”, and “discrimination statistics”. The good ele-
ments (i.e., RQS ratio = 60.5–78.9%) included “cut-off 
analyses”, “image protocol quality”, “multi-variable analy-
sis with non-radiomics features”, “multiple segmenta-
tions”, and “detect and discuss biological correlates”. Some 
of the excellent and good elements (e.g., “feature reduc-
tion or adjustment for multiple testing”, “comparison to 
gold standard”, “discrimination statistics”, “cut-off analy-
ses”, and “multiple segmentations”) are closely related to 
several processes of AI model construction, such as the 
extraction and selection of radiomics features, as well as 
the assessment and comparison of model performance, 
suggesting the relatively perfect and standard construc-
tion processes of AI models for the included studies. 
Additionally, the RQS elements of “detect and discuss 

biological correlates” and “multi-variable analysis with 
non-radiomics features” also presented a relatively high 
RQS ratio, highlighting some clinical significance of the 
included studies.

Poor elements (i.e., RQS ratio = 22.4–51.6%) included 
“validation”, “potential clinical utility”, and “calibra-
tion statistics”. The very poor elements (i.e., RQS 
ratio = 0–5.3%) included “open science and data”, 
“imaging at multiple time points”, “phantom study on 
all scanners”, “cost-effectiveness analysis”, and “pro-
spective study registered in a trial database”. It is 
noted that, among these elements, three have the top 
three full points, namely “prospective study registered 
in a trial database” (full points of 7), “validation” (full 
points of 5), and “open science and data” (full points of 
4). However, they presented relatively low RQS, par-
ticularly the element of “prospective study registered 
in a trial database” even presenting a zero average 
RQS ratio, suggesting that none of the included stud-
ies used prospective data to test the AI models. These 
three RQS elements are related to the assessment of 

Fig. 4 RQS results of AI models for all included studies in diagnosis and prediction fields. AI artificial intelligence, RQS radiomics quality score
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the generalizability and replicability of the AI mod-
els. Therefore, these low RQS ratios suggest that the 
robustness of AI models in most of the included stud-
ies is unclear. Additionally, the elements of “phantom 
study on all scanners”, “imaging at multiple time points”, 
and “cost-effectiveness analysis” also had very low aver-
age RQS ratios. This may be because all included stud-
ies were retrospective. Considering that “phantom 
study on all scanners” and “imaging at multiple time 
points” facilitates the examination of feature robustness 
to inter-scanner differences and temporal variabilities 
[122], this should be considered in future prospective 
studies.

According to above description, the RQS element can 
be mostly categorised into two groups. One is related to 
the performance improvement of AI models, such as “fea-
ture reduction or adjustment for multiple testing”, “multi-
variable analysis with non-radiomics features”, “multiple 
segmentations” and “phantom study on all scanners”. 
Specifically, for the element of “feature reduction or 
adjustment for multiple testing”, feature selection or 
dimensionality reduction for the extracted features with 
high redundancy and/or strong collinearity can optimize 
feature space, thereby improving the performance of the 
model [74–76, 97, 99]. For the element of “multi-variable 
analysis with non-radiomics features”, AI can mine sub-
tle information that may reflect heterogeneities of the 
lesions, but the commonly used clinical characteristics 
(e.g., PSA, age, family history, and routine habits) also 
contain information relevant to the diagnosis and prog-
nosis. Thus the clinical characteristics were complemen-
tary to the radiomics features of MR images to improve 
the performance of model [31, 71, 101]. For the element 
of “multiple segmentations”, the delineation of lesions 
with different methods (e.g., automatic and manual), by 
different radiologists and software, and in different stages 
of the breathing cycles is helpful to reduce the discrep-
ancy between the delineated region of interest (ROI) and 
the actual lesion. This may heighten the robustness and 
accuracy of the extracted features, based on which an 
AI model is constructed [31, 54, 71]. For the element of 
“phantom study on all scanners”, when radiomics features 
come from images scanned by multiple scanners, it is 
important to consider feature variabilities between scan-
ners. The phantom study is an appropriate way to meas-
ure the uncertainties of different scanners.

The other group of elements is related to the perfor-
mance evaluation of the AI model, such as “validation”, 
“prospective study registered in a trial database”, “cut-off 
analyses” and “potential clinical utility”. Specifically, for 
“validation” and “prospective study registered in a trial 
database”, the testing of an AI model using independent 
external cohort, particularly the prospective samples, 

can fully evaluate the robustness and generalisation of 
the model, thereby reducing the overfitting of AI models. 
For the element of “cut-off analyses”, some performance 
indexes, such as sensitivity and specificity, are calculated 
dependently on the risk threshold. The traditional default 
value of 0.5 doesn’t exactly reflect the clinical prob-
lem. Therefore, the appropriate risk threshold should be 
selected in conjunction with clinical decisions [54, 67, 71].  
For the element of “potential clinical utility”, analyzing 
potential applications of the model in a clinical prac-
tice is of vital importance to make clinical promotion  
[31, 67, 75].

In addition to the RQS elements, several factors may 
affect AI performance, such as the development of new 
AI models, large data queues and interaction between AI 
methods and clinical problems. First, new breakthroughs 
of AI technology can provide new networks model with 
a powerful ability to extract the deep features of medical 
imaging and combine multiple imaging modalities and 
multiple time points. This can make the model more fully 
and accurately characterize the tumor heterogeneity. Sec-
ond, an AI model trained using a larger data queue based 
on different institutions and different regions (e.g., cities 
or countries) can show stronger robustness and gener-
alization. Finally, the development of an AI model that 
is orientated to a specific clinical problem may make the 
model have more clinical applicability. Like the RQS ele-
ments, these three factors can also effectively improve 
the performance of AI modes for aiding in the precise 
diagnoses and treatments of prostate tumors.

Although many proposed AI models have been dem-
onstrated better performance than clinical assessment 
methods for the diagnosis and prediction of PCa, they 
are not yet extensively used in the clinical practice. The 
causes are various and difficult to clearly list. One possi-
ble cause may be that the AI models were usually trained 
using a relatively limited number of samples. Compared 
to the expertise of clinicians that is accumulated based on 
tens of years of experience, the limited-trained AI models 
provide the clinicians with less confidence in the man-
agement of PCa. Additionally, the weak interpretability of 
the AI model may be another cause. Thus, it is very dif-
ficult for the clinicians to combine the predicting results 
of the model with their expertise for the diagnoses and 
treatments of PCa.

Conclusions and prospect
In this review, we summarized the studies including 
the performance comparisons between AI and clinical 
assessment methods applied to PCa. Several findings 
were obtained: First, the performance of AI methods was 
generally better than clinical assessment methods for the 
diagnosis and prediction fields of PCa, particularly for the 
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detection of csPCa and prediction of some AP features, 
indicating that AI can aid clinicians in making accurate 
decisions (e.g., reducing the frequency of unnecessary 
biopsies and making personalized treatment plans). Sec-
ond, the AI models were constructed with relatively per-
fect and standard radiomics processes. However, due to 
inadequate multi-center validation, prospective data test-
ing, or the opening of the research material, the general-
izability and clinical practicality of AI models should be 
further validated.

In the future, AI models can be improved in the fol-
lowing potential aspects. First, the AI models will be vali-
dated using a high level of evidence, such as different race 
data and prospective data. Second, the combination of 
radiomics models based on MR images and Natural Lan-
guage Processing based on medical records will provide 
more comprehensive information and reduce the burden 
on radiologists. Third, more state-of-the-art and complex 
AI methods, such as ones integrating the expertise of 
radiologists into the latest network architectures, will be 
developed to further improve the diagnosis and predic-
tion of PCa. Additionally, for the applications of AI meth-
ods in the management of PCa, AI methodology should 
further extend to the fields beyond the above-mentioned 
tasks in the present study, such as the identification of the 
patients qualified for active surveillance, the prediction of 
local recurrence, survival analysis, and comparison of the 
prognosis of different treatment plans.
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