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Dear Editor,

Timely and effective hemostasis is of great significance 
for reducing body damage and mortality of patients [1]. 
Alginate is generally considered to be an excellent hemo-
static polymer-based biomaterial and has been approved 
by the Food and Drug Administration as Generally Rec-
ognized as Safe [2]. However, the violent crosslinking 
reaction and unstable structure at the wound site limit 
its clinical applications. Hence, we report a biocompat-
ible and injectable composite hydrogel methacrylate 
alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine 
(NPG)-initiated composite hydrogel (AEC) composed of 
photocrosslinkable alginate, viscosity modifiers and novel 
white light photoinitiator, namely Eosin Y/NPG system, 
for instant hemorrhage control.

We first investigated the photoinitiators and corre-
sponding light sources for Alg-AEMA photopolym-
erization. White light was considered non-phototoxic 
compared with typically used short wavelength light for 
photopolymerization (Additional file 1: Fig. S1a, b). How-
ever, white light photoinitiators, such as tris-bipyridyl 
ruthenium hexahydrate (Ru)/sodium persulfate (SPS) 
system, Eosin Y/triethylamine/N-vinyrrolidone (NVP) 
system, suffered shortcomings such as low crosslink-
ing efficiency [3]. We reported Eosin Y/NPG as a highly 
efficient photoinitiator system for the preparation of 
hydrogels in the first instance (Fig.  1a). Upon the irra-
diation of the white light emitting diode (emission spec-
trum showed in Fig.  1b), Eosin Y (absorption spectrum 
showed in Fig. 1b) can be excited from the ground state 
to the triplet state and extract hydrogen protons from 
NPG. Then the NPG intermediates can experience a 
decarboxylation process and produce aminoalkyl radi-
cals to induce the crosslinking of Alg-AEMA (Fig.  1a) 
[3]. Photopolymerization kinetic study in Fig. 1c, d indi-
cated that the initiating efficiency [represented by the 
double bond conversion (DBC) of poly (ethylene gly-
col) diacrylate 400, DBC%] increased with the increase 
of NPG, but the increase of Eosin Y did not obviously 
change the initiation efficiency. Photopolymerization 
kinetic study and direct contact cytotoxicity test (Fig. 1e) 
were used to determine the optimal concentrations of 
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Eosin Y and NPG for biomedical applications as 0.01% 
(w/v) and 0.1% (w/v), respectively. Notably, Eosin Y/NPG 
proved to be an efficient photoinitiator system for radi-
cal polymerization of acrylic monomers compared to the 
commonly used Ru/SPS system and Eosin Y/triethanol-
amine/NVP system (Fig.  1f ). The DBC of Eosin Y/NPG 
group exceeded 75% after approximately 120  s of irra-
diation while the highest DBC reached by Ru/SPS group 
and Eosin Y/triethanolamine/NVP group during the test 
were around 20% and 18%, respectively. Highly-efficient 
photoinitiator system and the easily available white-light 
source guarantee the safety and the convenience of use of 
the hydrogel.

To enhance the injectability of 2% (w/v) Alg-AEMA 
hydrogel, 2% (w/v) polyvinylpyrrolidone, 1% (w/v) 
sodium carboxymethyl cellulose and 1% (w/v) glyc-
erol were mixed as viscosity modifiers and the com-
posite hydrogel was named AEC (Fig.  1g). Alg-AEMA 
hydrogel initiated by Eosin Y/NPG (AE) was used as a 
control in the following. Figure 1h presents the gelling 
transition of AEC under the 90 s illumination of a white 
light  emitting diode (100 mW/cm2). Irradiation less 
than 70 s was insufficient for full photopolymerization 
of the hydrogel. Scanning electron microscope images 
showed that AEC exhibited highly porous network 
structures (Fig.  1i). Figure  1j showed a shear thinning 
behavior of AE and AEC, while AEC exhibited higher 
viscosity at the same shear rate. Dynamic time-sweep 
test and dynamic frequency-sweep test showed a rapid 
gelation process of AEC and its semi-solid state with 
the assistance of viscosity modifiers (Fig. 1k, l and Addi-
tional file 1: Fig. S2a). AEC exhibited better injectabil-
ity (Fig.  1m, Additional file  2: Movie S1) and stability 
before photopolymerization (Additional file 1: Fig. S2b)  
due to the addition of the modifiers. Compression test 
showed that although the maximum compressive strength 
decreased [(6.36 ± 1.15) kPa vs. (16.30 ± 0.87) kPa] after the 
addition of modifiers, there were no significant differ-
ences between the compressive modulus of AEC and 
AE [(239.84 ± 55.25) Pa vs. (174.95 ± 56.25) Pa] (Fig. 1n, 
Additional file 1: Fig. S3a, b).

Furthermore, we tested the cytocompatibility, hemo-
compatibility and degradability to assess the biosafety 
of the composite hydrogel. Cell Counting Kit-8 assay 
(Fig.  1o) and fluorescence imaging of the Live/Dead 
staining (Additional file 1: Fig. S4a) showed high propor-
tion of living cells after 72  h incubation with leaching 

solution of AEC. The photopolymerization process of 
AEC also exhibited good cytocompatibility (Additional 
file 1: Fig. S4b). In vitro hemolysis test showed the hydro-
gels exhibited superior hemocompatibility (Fig. 1p). AEC 
showed a better in vitro degradability (Additional file 1: 
Fig. S5). Subcutaneous implantation of the hydrogels did 
not cause obvious inflammation reaction and the porous 
structure of AEC enabled faster tissue cell migration and 
organization than AE over time (Fig. 1q, r).

Blood clotting index value and whole blood clotting 
time were generated as indicators for further investiga-
tion of in vitro coagulation function of AEC [4]. The lower 
blood clotting index values and relatively shorter blood 
clotting time of AEC than that of clinically used cellulose 
gauze and gelatin sponge suggested an increase of blood 
clotting ability in the hydrogel groups (Fig.  1s, t). Scan-
ning electron microscope images in Fig. 1u and immuno-
fluorescence staining of CD62P in Fig.  1v revealed that 
AEC can accelerate blood coagulation by stimulating 
the formation of fibrin network and activating platelets. 
Mouse liver trauma model was adopted for the measure-
ment of in vivo hemostatic performance (Fig. 1w, x). AEC 
rapidly sealed the wound and terminated the mouse liver 
bleeding with total blood loss of (47.40 ± 7.61) mg and 
clotting time of (85.00 ± 3.16) s, which were dramatically 
lower than those in the gauze or sponge treated groups 
(Fig. 1y, z and Additional file 3: Movie S2). Factors affect-
ing the hemostatic efficiency of alginate compound 
hydrogel were mainly proportion of hydrogel compo-
nents, intensity of light source, crosslinking time, etc. For 
instance, lower concentration of Alg-AEMA cannot form 
hydrogels with sufficient mechanical strength. Insuffi-
cient light source intensity will prolong the photocuring 
time and insufficient photopolymerization can affect the 
hemostatic effect due to the inability to firmly adhere to 
the bleeding point. Although increasing the amount of 
photoinitiators can accelerate the photopolymerization, 
the potential cytotoxicity of the photoreaction system 
needs to be considered. Therefore, AEC can be consid-
ered as an injectable hydrogel with both good hemostatic 
function and good biological safety.

In summary, our study provided a new photoinitiator 
system Eosin Y/NPG, which was currently the most effi-
cient white light photoinitiator commonly used, and an 
injectable photo-crosslinkable hydrogel AEC with good 
biocompability, which was proved to be a promising 
strategy for rapid hemorrhage control.
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Fig. 1  (See legend on next page.)
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Fig. 1  Preparation and characterization of injectable composite hydrogel with rapid hemostatic function. a Speculation mechanism of Eosin Y/
NPG system-initiated polymerization reaction. b UV–visible absorption spectra of Eosin Y and emission spectrum of the white light LED. c and d 
Evaluation of the initiating efficiency of Eosin Y/NPG system. e Direct contact cytotoxicity assay of Eosin Y, NPG, and Eosin Y/NPG photoinitiator 
system (n = 3). f Photopolymerization kinetic experiment of various photoinitiators. g Schematic illustration of the composition of AEC. h 
Digital photographs of AE and AEC gelling transition upon white light irradiation (90 s). i SEM images of AE and AEC. Scale bar = 200 μm. j 
Viscosity versus shear rate for AE and AEC. k Dynamic time-sweep rheological analysis showing the gelation kinetics of AE and AEC. l Dynamic 
frequency-sweep rheological analysis of AE and AEC. m Macroscopic view of the injectability of AE and AEC. n Representative stress–strain 
curves of compression test. o Relative cell viability of NIH/3T3 fibroblasts after incubation with leaching solution of AE or AEC for 24, 48 and 72 h 
(n = 3). p Macroscopic view and statistical results of in vitro hemolysis assay (n = 3). q HE staining of explanted AE and AEC after 1, 3 and 5 weeks 
of subcutaneous implantation in mice. The red arrows represented migrated tissue cells. Scale bar = 20 μm. r Macroscopic view of explanted AE 
and AEC. The red dashed line indicated the diameter of the residual hydrogel in each group. s Macroscopic view of BCI test and BCI value-time 
curves of different samples (n = 3). t Macroscopic view of whole blood clotting test and the results showing a relatively shorter clotting time of AEC 
(n = 3). u SEM morphology of the clotting blood on AEC and cellulose gauze at 1000 × (left) and 2000 × (right) magnification. The yellow arrows 
represented fibrin network and the red arrows represented deformed red blood cells. Scale bar = 20 μm. v Immunofluorescence staining of CD62p 
(red) showing the platelet activation under the stimulation of different samples. Scale bar = 200 μm. w Schematic illustration of the surgical 
procedure of hemostasis experiments in mouse liver trauma model. x Photographs of the hemostatic effect of different treatments in mouse liver 
trauma model. Total blood loss (y) and clotting time (z) of different samples in mouse liver trauma model (n = 5). All statistical data are represented 
as mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, One-Way analysis of variance, ANOVA, Tukey’s post hoc test. LED light emitting diode, 
DBC double bond conversion, NPG N-phenylglycine, AE Alg-AEMA hydrogel initiated by Eosin Y/NPG, CMC sodium carboxymethyl cellulose, 
PVP polyvinylpyrrolidone, Ru tris-bipyridyl ruthenium hexahydrate, SPS sodium persulfate, TEOA triethanolamine, NVP N-vinyrrolidone, AEC 
Alg-AEMA-based Eosin Y/NPG-initiated composite hydrogel, G’ storage modulus, G’’ loss modulus, BCI blood clotting index, NIH National Institutes 
of Health

(See figure on previous page.)
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NPG	� N-phenylglycine
NVP	� N-vinyrrolidone
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SPS	� Sodium persulfate
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