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Dear Editor,

Ferroptosis, an iron-dependent form of cell death driven 
by overwhelming lipid peroxidation, represents a vulner-
ability in cancers, and therapeutic strategies to further 
potentiate ferroptosis hold great potential for melanoma 
treatment.

To systematically identify drugs that sensitize ferrop-
tosis, we initially calculated ferroptosis score (FPS) using 
our published algorithm model [1], and conducted spear-
man correlation analysis between FPS and the cell sen-
sitivities to various anti-cancer drugs across 859 cancer 
cell lines. Remarkably, drugs targeting epigenetic regu-
lators were significantly associated with high FPS, espe-
cially bromodomain and extra-terminal domain (BET) 
inhibitors (I-BET151, JQ1, and GSK525762A) (Fig.  1a). 
Further investigations revealed a strong synergy in mel-
anoma cells when BET inhibitors (JQ1, NHWD-870, 
OTX015, and I-BET151) were combined with the fer-
roptosis inducer RSL3, an inhibitor of glutathione peroxi-
dase 4 (GPX4), with combination index values less than 1 
and fewer colony numbers (Additional file 1: Fig. S1a-j).  
Consistently, BET inhibitors also sensitize melanoma 
cells to genetic inhibition of GPX4 (Additional file 1: Fig. 
S1k-s). Notably, the cytotoxicity of the co-treatment of 
BET inhibitors and RSL3 could be completely abrogated 
by the ferroptosis inhibitor ferrostatin-1 and the iron 
chelator deferoxamine, but not by inhibitors of apopto-
sis (Z-VAD-FMK), necroptosis [necrostatin-1s (Nec-
1s)], or autophagy [chloroquine (CQ)] in melanoma 
cells (Fig.  1b, Additional file  1: Fig. S2a). The combined 
treatment triggered prominent ferroptosis-related char-
acteristics, including more lipid peroxidation (Fig.  1c, 
Additional file 1: Fig. S2b-c), and shrunken mitochondria 
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Fig. 1 (See legend on next page.)
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with increased membrane density (Fig.  1d). Moreover, 
the BET inhibitors-enhanced cell death in GPX4-defi-
cient melanoma cells was restored by ferroptosis inhibi-
tors (Additional file 1: Fig. S2d-g). These results suggest 
that BET inhibitors potentiate GPX4 inhibition-induced 
ferroptosis in melanoma.

Drug target analysis revealed that BRD4, but not 
BRD2/3, was negatively correlated with FPS in mela-
noma cohorts (Additional file 1: Fig. S3a). Genetic inhibi-
tion of BRD4, but not BRD2/3, enhanced RSL3-induced 
ferroptosis (Fig.  1e, Additional file  1: Fig. S3b-h), and 
BRD4 overexpression resisted ferroptosis in melanoma 
cells (Additional file  1: Fig. S3i-m), suggesting that BET 
inhibitors potentiate RSL3-induced ferroptosis by target-
ing BRD4. RNA-seq analysis demonstrated that AKR1C2 
was most dramatically downregulated by pharmacologi-
cal and genetic inhibition of BRD4 among 7 ferroptosis 
suppressors (Fig. 1f, Additional file 1: Fig. S4a-b), which is 

consistent with other melanoma datasets after I-BET151 
treatment (Additional file  1: Fig. S4c). BET inhibitors 
could significantly decrease AKR1C2 expression at both 
mRNA and protein levels (Fig.  1g-h, Additional file  1: 
Fig. S4d-e). Likewise, genetic inhibition or overexpres-
sion of BRD4 suppressed or upregulated the expression 
of AKR1C2 in melanoma cells, respectively (Additional 
file 1: Fig. S4f-n). Notably, BET inhibitors could not affect 
the expression and transcription activity of NRF2, the 
known transcription factor of AKR1C2 [4], and GPX4 
expression (Additional file  1: Fig. S4o-p), ruling out the 
possibility that BET inhibitors sensitize melanoma fer-
roptosis through GPX4 or NRF2 repression. ChIP-seq 
data showed a prominent BRD4 binding peak in the 
AKR1C2 gene promoter, while the amplitude of the bind-
ing peak was diminished upon NHWD-870 treatment, 
which is consistent with Zhang et  al. [3] ChIP-seq data 
analysis (Fig. 1i), suggesting that BRD4 transcriptionally 

Fig. 1 BET inhibitor‑mediated downregulation of AKR1C2 sensitizes melanoma to ferroptosis induced by GPX4 inhibition. a Signaling pathways 
targeted by drugs that are sensitive (blue) or resistant (red) to the ferroptosis score (FPS) from CTRP database. Drug names are listed on the x‑axis 
and the signaling pathway targeted by the drug on the y‑axis. The upper bar plot denotes the Spearman correlation between FPS and drug 
sensitivity. r < 0 defines drug sensitivity, r > 0 defines drug resistance; the bar plot on the right shows the number of drugs targeting each 
signaling pathway; The size of the point indicates the significance of the correlation. b A375 melanoma cells were pretreated with JQ1 (1 μmol/L) 
or NHWD‑870 (10 nmol/L) for 24 h, and then cotreated with RSL3 (2.5 μmol/L). DMSO, necrostatin‑1s (Nec‑1s, 10 μmol/L), chloroquine (CQ, 
10 μmol/L), Z‑VAD‑FMK (10 μmol/L), ferrostatin‑1 (Fer‑1, 4 μmol/L), or deferoxamine (DFO, 100 μmol/L) were added in combination groups for 10 h, 
and cell viability was assessed. c Lipid peroxidation production in A375 cells was measured by flow cytometry using BODIPY‑C11. Cells were first 
treated with 1 μmol/L JQ1 or 10 nmol/L NHWD‑870 for 24 h, alone or in combination with 2 μmol/L RSL3, 2 μmol/L RSL3 plus 4 μmol/L Fer‑1, 
2 μmol/L RSL3 plus 1 mmol/L N‑acetyl‑cysteine (NAC) for another 6 h as indicated. d Transmission electron microscopy of A375 cells pretreated 
with JQ1 (1 μmol/L) for 24 h and then co‑treated with RSL3 (2.5 μmol/L) in combination group for 6 h. Red arrow indicates morphological 
change of mitochondria. Scale bar = 4 μm (upper), 1 μm (bottom). e Dose–response curves of RSL3‑induced death in control (shCon) and BRD4 
knockdown (shBRD4) A375 cells. f Heatmap representation of changes in gene expression in JQ1‑treated/siBRD4 versus control A375 cells (P < 0.05). 
Each horizontal line represents one gene, ordered by gene expression. g The regulatory effect of BET inhibitors on AKR1C2 expression after 48 h 
treatment based on Western blotting. DMSO (0.02%); NHWD‑870: 10 nmol/L; JQ1: 2 μmol/L; OTX015: 2 μmol/L; I‑BET151: 2 μmol/L. h Quantification 
of AKR1C2 expression in A375 cells treated with the same BET inhibitors as g by immunofluorescence images. Scale bar = 20 μm. i ChIP‑seq analysis 
of BRD4 binding peak in the AKR1C2 promoter in DMSO‑treated [2] and NHWD‑870‑treated melanoma cells (upper) or in DMSO‑treated [3] 
and JQ1‑treated cells (lower). Red boxes indicate 2 kb regions around the transcription start site. The arrow indicates the transcription direction. j 
Relative viability of 5 μmol/L RSL3‑treated shCon and shAKR1C2 A375 cells at the presence of DMSO or 10 nmol/L NHWD‑870. k Relative viability 
of 5 μmol/L RSL3‑treated control and AKR1C2 overexpression A375 cells in the presence of DMSO or 10 nmol/L NHWD‑870. l Tumor growth 
in control, GPX4 knockout (sgGPX4), NHWD‑870, and combination groups. m Representative immunohistochemistry images of 4‑HNE and GPX4 
in the four groups. Scale bar = 50 μm. n Tumor growth in the isotype IgG2α, NHWD‑870, anti‑PD‑1 antibody, and combination groups. The 
percentage of cells expressing IFN‑γ (o) and GZMB (p) in tumor‑infiltrating  CD8+ T cells by flow cytometry analysis. q Spatial enhanced‑resolution 
clustering performed by the BayesSpace algorithm at the left panel identified 4 clusters corresponding to the original histopathological 
annotations. Spatial heatmap shows the level of BRD4 and FPS expression among 4 clusters at the right panel. r Scatter plot shows the spearman 
correlation between the expression level of BRD4 and FPS. Kaplan–Meier curves compare overall survival (TCGA‑SKCM) (s) and progression‑free 
survival of immune checkpoint inhibitors (ICIs) cohorts (PRJEB23709) (t) between the high‑FPS + low BRD4 (blue) and low‑FPS + high BRD4 (yellow) 
groups. u The proportion of patients with different responses to immunotherapy in the TCGA‑SKCM cohort with TIDE‑predicted ICB response 
and the melanoma ICIs cohort (PRJEB23709). R response, including responder, complete response and partial response, NR non‑response, 
including non‑responder, stable disease and progressive disease. Quantification data are presented as mean ± SD, and compared using one‑way 
ANOVA in b-c, o-p, two‑way ANOVA in e, j-l, n, log‑rank test in s-t, and Fisher’s exact test/chi‑square test in u. AKR1C2 aldo–keto reductase 1C2, 
BET bromodomain and extra‑terminal domain, BRD4 bromodomain‑containing protein 4, CQ chloroquine, CTRP Cancer Therapeutics Response 
Portal, DFO deferoxamine, EV empty vector, FDR false discovery rate, Fer‑1 ferrostatin‑1, FPS ferroptosis score, GPX4 glutathione peroxidase 4, 
GZMB granzyme B, 4‑HNE 4‑hydroxynonenal, ICIs immune checkpoint inhibitors, IFN‑γ interferon‑γ, NAC N‑acetyl‑cysteine, Nec‑1s necrostatin‑1s, 
NR non‑response, PD‑1 programmed cell death protein‑1, R response, SKCM skin cutaneous melanoma, TCGA the cancer genome atlas, ns 
non‑significant, *P < 0.05, **P < 0.01.

(See figure on previous page.)
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regulates AKR1C2 expression. We previously reported 
that BET inhibitors suppress STAT3 signaling through  
the BRD4/IL-6 axis [4]. Inhibiting STAT3 activity by 
shRNA or the inhibitor stattic significantly suppressed 
AKR1C2 expression (Additional file 1: Fig. S5a-d). ChIP-
seq analysis also demonstrated that STAT3 binds to the 
AKR1C2 promoter (Additional file 1: Fig. S5e), suggesting 
that BET inhibitors directly inhibit AKR1C2 expression 
by BRD4, or indirectly by the BRD4/IL-6/STAT3 axis. 
AKR1C2 was reported to inhibit ferroptosis by degrad-
ing lipid peroxides [4], which was validated in our study. 
Pharmaceutical and genetic inhibition of AKR1C2 sen-
sitized melanoma cells to ferroptosis (Additional file  1: 
Fig. S6a-h). On the contrary, AKR1C2 overexpression 
conferred resistance to RSL3-induced ferroptosis in 
melanoma cells (Additional file  1: Fig. S6i-l). Strikingly, 
BET inhibitors failed to further potentiate RSL3-induced 
ferroptosis in the presence of AKR1C2 inhibitors or 
AKR1C2 genetic silencing (Fig. 1j, Additional file 1: Fig. 
S6m-s). Overexpression of AKR1C2 partially rescued 
cytotoxicity caused by the co-treatment of BET inhibitors 
and RSL3 (Fig.  1k, Additional file  1: Fig. S6t-u). These 
findings suggest that BET inhibitors potentiate RSL3-
induced ferroptosis at least partially through AKR1C2 
inhibition.

In vivo, GPX4 knockout exhibited minimal impact 
on melanoma progression, and NHWD-870 treatment 
alone moderately inhibited melanoma growth (Fig.  1l, 
Additional file 1: Fig. S7a-c). However, combining GPX4 
knockout with NHWD-870 significantly impaired 
melanoma growth and reduced tumor weight (Fig.  1l, 
Additional file  1: Fig. S7a-d), with markedly increased 
staining of 4-HNE, an end product of lipid peroxidation 
(Fig.  1m, Additional file  1: Fig. S7e). Cancer immuno-
therapy has been regarded as an important ferroptosis-
associated pathological model in vivo [6]. We found that 
BET inhibitor administration potentiated the efficacy of 
anti-PD-1 antibody (Fig. 1n, Additional file 1: Fig. S7f-i),  
leading to an elevated proportion of IFN-γ+  CD8+ and 
 GZMB+  CD8+ T cells (Fig.  1o-p, Additional file  1: Fig. 
S7j), despite no increase in total tumor-infiltrating  CD8+ 
T cells (Additional file  1: Fig. S7k). These results sug-
gested that BET inhibitors sensitize melanoma to GPX4 
inhibition-induced ferroptosis and immunotherapy 
in vivo. We further observed that BRD4 expression was 
negatively associated with FPS in three melanoma sin-
gle-cell RNA-seq datasets (Additional file 1: Fig. S8a-d), 
as well as in melanoma regions from spatial transcrip-
tome data (Fig.  1q-r). Notably, BRD4 is significantly 
upregulated, while ferroptosis level is downregulated in 
immunotherapy-resistant malignant melanoma subpop-
ulations (Additional file 1: Fig. S8e). Melanoma patients 
with high-ferroptosis plus low-BRD4/AKR1C2 predict 

a better prognosis (Fig.  1s-t, Additional file  1: Fig. S8f ) 
and improved response to immunotherapy (Fig.  1u, 
Additional file 1: Fig. S8g-h). These findings suggest that 
BRD4/AKR1C2 is associated with reduced ferroptosis 
level and poor efficacy of immunotherapy from multi-
omics characterization.

Overall, our data illustrate that BET inhibitors poten-
tiate GPX4 inhibition-induced ferroptosis through the 
dual downregulation of AKR1C2, and provide the ration-
ale for combining BET inhibitors with GPX4 inhibitors 
or immunotherapy for melanoma treatment (Additional 
file 1: Fig. S9).
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