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Abstract

The circadian clock and sleep are essential for human physiology and behavior; deregulation of circadian rhythms
impairs health and performance. Circadian clocks and sleep evolved to adapt to Earth’s environment, which is
characterized by a 24-hour light—dark cycle. Changes in gravity load, lighting and work schedules during spaceflight
missions can impact circadian clocks and disrupt sleep, in turn jeopardizing the mood, cognition and performance of
orbiting astronauts. In this review, we summarize our understanding of both the influence of the space environment on
the circadian timing system and sleep and the impact of these changes on astronaut physiology and performance.
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The circadian clock and sleep, two dynamically associated
physiological systems, are fundamental for physiology and
contribute to optimal behavior and performance [1]. High
performance efficacy is critical for astronauts to accom-
plish tasks on space missions. During missions, astronauts
are exposed to the space environment, which is dramatic-
ally different from that on Earth [1,2]. The circadian clock
and sleep are subject to change in the space environment,
which further alters physiology and performance. Under-
standing the influence of the space environment on the
circadian clock, sleep and performance is highly important
for the management of space travel and will be of critical
importance for future long-duration space exploration.

Circadian clock and sleep

The circadian clock controls nearly all patterns of human
biology, including brain-wave activity, sleep-wake cycles,
body temperature, hormone secretion, blood pressure, cell
regeneration, metabolism and behavior, which display
~24-hour periodicity [3]. In addition, cognition and per-
formance are also under circadian control [4].
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In mammals and humans, the circadian clock consists
of a central clock and peripheral tissue clocks. The cen-
tral clock is located in the suprachiasmatic nuclei (SCN)
of the hypothalamus, which functions as the master
pacemaker by synchronizing physiological rhythms in
accordance with Earth’s cycling environment. The cen-
tral clock operates to synchronize the clocks in periph-
eral tissues [3,5].

At the molecular level, mammalian clocks are com-
posed of positive and negative elements that drive the
rhythmicity of gene expression. BMALL and CLOCK
are two positive elements that bind to the promoters of
the Period (Perl and Per2) genes and Cryptochrome
(Cryl and Cry2) genes and facilitate their transcription.
The protein products PER and CRY accumulate,
dimerize and act as negative elements that bind to posi-
tive elements, which leads to repression of their own
transcription. These positive and negative circuits form
a negative feedback loop that is essential to eukaryotic
circadian clocks [5].

The free-running period of the human clock is slightly
longer than 24 hours, but it is entrained to be 24 hours
by synchronization to the daily cycling environmental
factors. These factors, such as light and temperature, act
as zeitgebers (external time-giving cues) that set the
phase of circadian rhythms [6-8]. Among the zeitgebers,
light is the major input into the central clock, which
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coordinates internal physiology with the external envir-
onment to optimize survival [9]. Bright light >2,500 lux
is sufficient to entrain the human circadian clock, and
light is often used in the treatment of disorders associ-
ated with circadian desynchronization [10].

Sleep is a large component of the daily circadian cycle
and is cooperatively regulated by homeostatic and cir-
cadian factors. Normal waking is associated with neur-
onal activity in several chemically defined ascending
arousal systems [11]. Ascending arousal systems include
monoaminergic neurons in the brainstem and posterior
hypothalamus, cholinergic neurons in the brainstem
and basal forebrain, and orexin neurons in the lateral
hypothalamus. An important set of sleep-related neu-
rons are located in the preoptic hypothalamus, includ-
ing the ventrolateral preoptic (VLPO) area and the
median preoptic nucleus [11].

Neurons in each of the monoaminergic nuclei fire
more rapidly during wakefulness than during sleep; fir-
ing slows significantly during non-rapid eye movement
(non-REM, or NREM) sleep and stops altogether dur-
ing REM sleep [5,12,13]. Orexin neurons are similarly
more active during wakefulness than during sleep [14].
Many basal forebrain neurons, including most choli-
nergic neurons, are active during both wakefulness and
REM sleep [5]. VLPO neurons are primarily active
during sleep and contain the inhibitory neurotransmit-
ters galanin and GABA [15,16]. The VLPO area inhibits
the ascending arousal regions and is in turn inhibited
by them, thus forming a mutually inhibitory system
resembling what electrical engineers call a “flip-flop
switch” [17,18].

The circadian propensity for sleep increases during
the sleep state, thus ensuring continued sleep despite
the diminishing homeostatic need for it toward the
end of the sleep cycle. Anatomical and functional evi-
dence indicates that there is a relationship between the
SCN and the sleep-wake system. The SCN has rela-
tively modest projections into the VLPO and orexin
neurons [19-21]. However, the major output is directed
toward the adjacent subparaventricular zone and the
dorsomedial nucleus of the hypothalamus. Cell-specific
lesions in the ventral subparaventricular zone or the
dorsomedial nucleus of the hypothalamus disrupt the
circadian rhythms of sleep and wakefulness, suggesting
that neurons in these areas must relay this influence
[22,23]. Disruption of sleep-wake timing can lead to
misalignment of rhythmicity in physiological variables.
Sleep deprivation causes deterioration and a decrease
in performance [24]. Insufficient or mistimed sleep can
reduce the rhythmicity of clock-controlled genes
[6,25]. These facts suggest that the circadian clock and
sleep mutually regulate each other at both the molecu-
lar and the physiological levels (Figure 1).
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Disruption of circadian clocks affects physiology
and performance

Disruption of circadian rhythms may affect physical and
mental health. Sleep disorders, cardiovascular disease, dia-
betes, obesity, cancers, inflammatory disorders, and mood
disorders (depression, schizophrenia, and attention deficit)
may result from dysfunction of circadian rhythms [1].
Genetic mutations and environmental desynchronization
are the major causes of circadian rhythm disorders [1,26].

Jet lag and shift work cause disruption of circadian
rhythms and sleep and can cause symptoms including day-
time anergia, alternating complaints of insomnia and
hypersomnia, emotional disturbances, and gastrointestinal
distress. Long-term shift work may lead to even more se-
vere symptoms, such as obesity, metabolic syndromes, car-
diovascular disease, and even increased cancer risk [6,27].
Athletic performance is also compromised by disruption
of the circadian clock and sleep. Athletes who travel across
time zones may have transient desynchronization of their
circadian timing that decreases performance [25]. These
facts suggest that the circadian clock and sleep are essen-
tial for both health and behavior.

In a sleep restriction study, the reduction of sleep time
to 6 hours had no overt effect on mental functioning on
the first day, but the influence rose significantly with the
number of days of restricted sleep [28], reflecting the ef-
fect of accruement of sleep debt. Deprivation of sleep re-
sults in a cumulative decrease in psychomotor vigilance.
Interestingly, psychomotor vigilance changes in a circa-
dian fashion [4], suggesting that both the circadian clock
and sleep are important for cognitive performance.
Fatigue from sleep deprivation is a significant risk factor
contributing to performance decreases, and as conse-
quence, accidents often occur at the times when people
are normally asleep [29].

Exercise and performance can also feed back to influ-
ence the circadian clock (Figure 1). Independent studies
have demonstrated that exercise can affect the expression,
phase and periodicity of clock-associated genes [30,31].

Disturbances in circadian rhythms, sleep and
performance in space

In space or under simulated microgravity conditions,
circadian rhythms and the expression of clock-associated
genes are subject to change, which leads to disruption of
circadian rhythms [32-37]. In space, there are a number of
factors that may influence circadian rhythms and sleep,
which include microgravity, lighting conditions, the heavy
workload, the shift-work schedule, confinement, and
motion sickness (Figure 1). For example, in orbit, the
gravitational force is very low (107*-10°° x g) [38]. In
addition, the light—dark cycle is approximately 90 mi-
nutes, and astronauts are exposed to light approxi-
mately two-thirds of the time. In a space station, the
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Figure 1 Network diagram of the circadian clock, sleep, physiology and behavior in space. In space, a variety of environmental factors are
involved in the regulation of the circadian clock and sleep. The circadian clock and sleep regulate each other. The alignment of the circadian
clock and sleep is critical for physiology, behavior and performance. In turn, behavior and performance can feed back to affect the circadian clock

lighting intensity is seriously low relative to that on
Earth, although the light—dark cycle can be adjusted to
be 24 hours long. Such low light intensity is below the
threshold to efficiently entrain the human circadian
clock [1]. In addition, the electromagnetic field and
radiation exposure also greatly differ from those on the
ground, and these factors might also cause changes in
circadian rhythms [39,40].

Misalignment of the circadian clock and sleep affects the
nervous system, musculoskeletal system, endocrine sys-
tem, and cardiovascular system, among others (Figure 1).
For astronauts, circadian misalignment can increase health
risks and result in a decreased ability to effectively and effi-
ciently perform tasks [1]. Astronauts must fulfill heavy-
duty mission tasks and complete spacecraft maintenance
during flights. The extreme space environment, the heavy
workload and the shift-work schedule can severely disrupt
circadian rhythms and sleep.

Several lines of evidence suggest that a simulated or
actual space environment can induce changes in circadian
rhythms [36,37,41-44]. Independent orbital studies have
demonstrated that the amplitude of body temperature
rhythmicity decreases during space flight in comparison
with that on the ground [45,46]. Similarly, hypergravity
leads to a dramatic decrease in body temperature and
locomotor activity in rats [47]. A bed-rest experiment has
been used to simulate the effects of weightlessness on the

cardiovascular system and other physiological variables.
Results from several bed-rest studies indicate that bed rest
modifies circadian rhythms [41-44]. In certain studies,
subjects on bed rest also had decreases in the ampli-
tude of a number of physiological variables, including
heart rate and blood pressure [48,49]. Bed rest also
leads to changes in the rhythms of certain hormones
and electrolytes, including cortisol, melatonin, and
aldosterone [50,51]. Astronauts studied aboard the
Russian Mir station had a 2-hour delay in the phase of
their body temperature relative to phases on Earth
[51]. Modification in the phase of certain variables, in-
cluding heart rate and body temperature, has also been
observed in several, but not all, studies of astronauts
[52,53]. It is noteworthy that even a small phase shift
can impose a considerable influence on human pe-
rformance [54]. In space, numerous interwoven envi-
ronmental factors differ from those on Earth, so it is
difficult to determine the effects of individual factors.
Nevertheless, complementary to the space data, data from
simulation studies suggest that gravitational change might
be one of the causes that contribute to the changes in
circadian rhythms.

In addition to circadian rhythms, disturbance in sleep
is another large challenge for orbiting astronauts. A sur-
vey of the sleep patterns of space shuttle crew members
demonstrated the occurrence of the most severe sleep
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disturbances on the first and last days of a mission, with
less than 6 hours of sleep per day [53,55]. In space, it
usually takes longer for astronauts to fall asleep than
that it takes on Earth [56]. An investigation of the medi-
cations used during 79 space shuttle missions indicated
that 45% of those used were for the treatment of sleep
disturbances [56]. A variety of sleep problems have been
observed during Skylab missions, space shuttle missions
and Mir missions [57]. In addition to shortening of sleep
time, the sleep structure is subject to change. A reduc-
tion in the amount of slow-wave sleep and REM sleep, a
shortening of REM latency and an increase in the num-
ber of arousals are typically observed during short-term
space missions [49]. In contrast, the latent period for
falling asleep and for the appearance of deep-sleep stages
is considerably lengthened during prolonged flights. Upon
return from space, sleep latency and REM latency are very
short, and the percentage of REM sleep is markedly ele-
vated, particularly during the first sleep recording after
landing [53].

Sleep disturbance in space can be caused by stress,
motion sickness, light flashes, emotional stress, the high
work load, the abnormal work/rest schedule, thermal
discomfort, noise, muscle pain, or even an unsuitable
sleeping bag [58]. The consequences of sleep distur-
bances (insufficient sleep duration or inadequate sleep
quality) may include a decline in thinking ability, alert-
ness and judgment, as well as disorders of the immune
system, which can influence the aerial work efficiency
of astronauts [1,3,26]. Sleep deficiency also increases
the risk of performance errors, which contribute to
between 60% and 80% of aviation accidents [59].

Circadian and sleep deficits can result in a decrease in
cognitive performance [49,60-62]. A long-term study
revealed that in astronauts in a space station, the ampli-
tudes of oral temperature and alertness were significantly
decreased, and rhythmicity was dampened [45]. Casler and
Cook analyzed data from 29 studies that measured astro-
nauts’ response time, memory, reasoning, pattern recogni-
tion, fine motor skills, and dual-task performance and
revealed that several cognitive performance measures
appear to be affected [47]. Similar to data from ground ex-
periments, the orbiting astronauts show no overt changes
in performance during the first days in space. However,
during an 8-day mission to Mir, a decrease in fine manual
control was observed [52], suggesting that the impacts of
circadian and sleep disturbances on performance also have
a temporal dosage effect. Dijk et al. analyzed the changes
in the mood and cognitive performance of five astronauts
before, during, and after 16-day or 10-day space missions,
during which the sleep duration of those astronauts was
only approximately 6.5 hours per day. A set of methods,
including psychomotor vigilance task (PVT) measures; the
Karolinska sleepiness scale (KSS); and the performance,
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effort, and evaluation rating scale (PEERS), revealed that
there was a declining trend in performance and mood
during flight [49]. In a study of crew members on the
International Microgravity Laboratory (IML) space shuttle
mission (STS-42) and the Canadian Astronaut Program
Space Unit Life Simulation (CAPSULS) mission, a mental
workload and performance experiment (MWPE) and
short-term exhaustive memory and fine motor control
(MEMO) experiments associated with human-computer
interaction, respectively, were conducted. In these ana-
lyses, there was a significant decrease in motor perform-
ance, but not in cognitive performance [7].

In addition to natural environmental factors, certain
social factors, such as confinement and isolation, may
also contribute to the alterations of circadian rhythms
and sleep experienced by astronauts. A significant
decrease in the amplitude of wrist activity has been
demonstrated in a bed-rest experiment [51]. The Mars
520-day mission demonstrated that confinement and
isolation can result in inter-individually different deficits
in circadian rhythms, sleep and vigilance [46]. Thus, it is
critical to employ countermeasures to maintain the
appropriate rhythmicity of physiology and behavior on
space missions.

Countermeasures and treatments

To prevent and alleviate the consequences of circadian
and sleep deficits, countermeasures and treatments are
employed to minimize the potential health and perform-
ance deterioration resulting from sleep loss and circadian
rhythm disruptions. Treatments have included light the-
rapy, administration of drug therapy, and optimization of
the work-rest schedule.

In the space station, the illumination is often approxi-
mately 100 lux and usually less than 500 lux; there is not
sufficient light to maintain appropriate circadian rhythms
[63]. Light exposure is a commonly used approach to treat
circadian misalignment and sleep disruption. For this pur-
pose, bright light and dark goggles are used to enhance or
minimize the entrainment of the circadian clock. Short-
wavelength light (~460 nm to 512 nm) in the blue or green
range is more effective than bright light in the adjustment
of the human circadian pace [64]. Because the heavy-duty
workload and the shift-based work-rest schedule also
contribute to circadian and sleep disturbances, optimized
scheduling helps to improve the performance and alert-
ness of astronauts [29].

Sleep medications are also used to improve astronauts’
circadian rhythms and sleep; these medications account
for nearly half of the medicines used in space stations
[56]. Benzodiazepines, such as temazepam, are not ideal
because they have a long onset of action and a long half-
life. Instead, non-benzodiazepine hypnotics, such as zol-
pidem, are increasingly used. Melatonin was tested but
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showed no overt effect on the shuttle missions of STS-
90 (Neurolab) and STS-95 [49]. Pharmacokinetic dy-
namics in space may differ from that those on Earth,
making it necessary to assess the efficacies and side
effects of medications in space. Moreover, new medica-
tions for specific use by astronauts are needed.

Mars will be the next planet for human landing. The
self-rotation period of Mars is 24.65 hours, which is very
close to that of Earth. Nonetheless, the light intensity on
Mars is dramatically lower than that on Earth. It has been
presumed that the human circadian clock will adapt to the
daily day-night alternation on Mars if explorers are
exposed to a higher amount of light of the appropriate
spectrum. By contrast, dim lighting conditions, serving as
a weak stimulus (~1.5 lux), fail to entrain the human circa-
dian clock to the Martian day length [65].

Under moderately bright light (~450 lux), the human
circadian periods of the sleep-wake cycle, core body
temperature, plasma cortisol and melatonin can be
entrained to either 24.65 hours or 23.5 hours [66]. During
the Phoenix Mars Lander (PML) mission, approximately
87% of the subjects were entrained to the Martian day-
night cycle using this light intensity [67]. This light inten-
sity failed to entrain the human circadian clock to longer
or shorter periods (e.g., 21, 27 or 28 hours) [65,68-70],
which reflects the fact that the human circadian clock can
only be modifiable in a narrow window. These findings
might help to acclimatize astronauts during future long-
term Martian exploration.

Perspectives

The circadian clock and sleep play critical roles in control-
ling physiology, cognition and performance. In space, sleep
disturbance and/or circadian desynchronization have oc-
curred during most recorded missions on which these
were monitored. Both can result in decreased alertness
and performance failure [1,60,61]. Both circadian and sleep
disruptions are included in the Behavioral Health and Per-
formance (BH&P) area as well as the Advanced Human
Support Technology (AHST) area of NASA’s Bioastronau-
tics Critical Path Roadmap [62]. During China’s Shenzhou
missions, circadian rhythms and sleep have also been
regarded as important areas of research emphasis by the
Astronaut Center of China (ACC).

Very long-term space explorations will introduce more
and more new problems that will challenge astronauts
[71]. The identification of factors contributing to beha-
vioral risks and psychiatric disorders is of great import-
ance, allowing steps to be taken to prevent or treat these
disorders [1]. For operational purposes, understanding of
the fundamental mechanisms is of doubtless importance
[72]. For instance, given that whether the impacts of space
environmental factors on human circadian rhythms and
sleep are direct or indirect remains unclear, elucidation of
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the mechanisms of changes in circadian rhythms and sleep
is vital. Very limited in-flight studies have been conducted
to evaluate circadian and sleep impacts on performance,
so it will be necessary to perform systematic studies to
investigate the correlation between circadian and sleep
deficits and performance efficiency. In future exploration
of planets other than Mars, which possesses a similar day-
night cycle as Earth, modification of the robustness of the
circadian clock to adapt to local light—dark conditions will
be a great challenge.
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