Skip to main content

Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: the risk of senescent drift induction in secretome-based therapeutics

The Original Article was published on 17 August 2023

Regulatory changes in senescent cells could potentially affect the composition of extracellular vehicles (EVs), specifically altering their size and cargo. As a result, the released senescent EVs contain an unpredictable cocktail of growth factors and cytokines. These biomolecules have dual effects, potentially guiding the induction of senescence in affected cells and promoting an inflammation-related “domino effect” within the cellular environment, ultimately leading to tissue inflammaging.

Based on this view, we read with great interest the paper by Ding et al. [1] regarding the key biomedical issues of applying mesenchymal stem cell (MSC)-derived EVs for skin wound treatment. EVs secreted by cells have gained significant attention in recent years due to their potential therapeutic applications. These microvesicles are believed to play a crucial role in intercellular communication and have been investigated for their ability to deliver therapeutic cargo to target cells. However, we suppose it is important to critically evaluate in more detail the potential risks associated with EVs applications that may induce the senescence drift in recipient’s cells.

The authors noted the heterogeneity of EVs including size, yield and quantity, contents, and functional effects on recipient cells. Indeed, variations in isolation techniques, purification protocols, and storage conditions can significantly affect the quality and potency of EVs. The lack of standardization raises concerns about the reproducibility and reliability of EV-based therapies, making it difficult to compare results from studies with different designs.

MSCs derived from different sources, such as bone marrow, adipose tissue, and umbilical cord, display distinct differentiation tendencies, secrete unique paracrine factors, and have different immunomodulatory capabilities [2]. A recent study has shown that MSCs may be characterized by a senescence phenotype and reinforced growth arrest, termed the “senescence-associated secretory phenotype” [3]. The secretome of MSCs with senescent phenotypes generates a proinflammatory microenvironment affecting surrounding cells [4]. Human MSCs could enter the senescence phenotype, during expansion passing or cryopreservation [2]. Injections of the proinflammatory secretome of senescent cells could potentially induce a sequence of processes known as “inflammaging” in the affected tissues, consequently resulting in side effects.

Although scientific and clinical efforts have failed to develop a universal diagnostic kit for senescent cells, there are currently various laboratory assays available for the evaluation of the senescence components of EVs in clinical practice. These assays include enzyme-linked immunosorbent assay, which enables accurate assessment of a wide range of proteins, and matrix-assisted laser desorption/ionization mass spectrometry, which provides an approximate assessment through shotgun analysis. It is worth noting that there is a lack of affordable and precise methods to quantify the composition of cellular secretomes. However, advanced microfluidic-based cell assays may provide a potential solution.

Therefore, inflammaging associated with the secretome may pose a challenge for the clinical applications of EVs derived from the secretome of multipotent cells [5]. Prior to their use in therapy, it is crucial to assess the immunomodulatory potential of MSCs and senescent cell content, determine the functionality of isolated MSCs [2], and analyze the composition of MSC-derived secreted proteins.

The perspective we offer is expected to shed light on the impact of cell secretion and prevent potential complications and adverse events associated with the cellular senescent phenotype in EV-based therapies.

Availability of data and materials

Not applicable.

Abbreviations

EVs:

Extracellular vesicles

MSC:

Mesenchymal stem cell

References

  1. Ding JY, Chen MJ, Wu LF, Shu GF, Fang SJ, Li ZY, et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges. Mil Med Res. 2023;10(1):36.

    PubMed Central  PubMed  Google Scholar 

  2. Kizilay Mancini Ö, Lora M, Shum-Tim D, Nadeau S, Rodier F, Colmegna I. A proinflammatory secretome mediates the impaired immunopotency of human mesenchymal stromal cells in elderly patients with Atherosclerosis. Stem Cells Transl Med. 2017;6(4):1132–40.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Zhang Y, Ravikumar M, Ling L, Nurcombe V, Cool SM. Age-related changes in the inflammatory status of human mesenchymal stem cells: implications for cell therapy. Stem Cell Rep. 2021;16(4):694–707.

    Article  CAS  Google Scholar 

  4. Wu X, Xu X, Xiang Y, Fan D, An Q, Yue G, et al. Exosome-mediated effects and applications in inflammatory diseases of the digestive system. Eur J Med Res. 2022;27(1):163.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Lyamina S, Baranovskii D, Kozhevnikova E, Ivanova T, Kalish S, Sadekov T, et al. Mesenchymal stromal cells as a driver of inflammaging. Int J Mol Sci. 2023;24(7):6372.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

AS, IK, and DB wrote the main manuscript text. EY supervised the work. All authors read and approved the final draft for publication.

Corresponding author

Correspondence to Ilya Klabukov.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

This comment refers to the article available online at https://0-doi-org.brum.beds.ac.uk/10.1186/s40779-023-00472-w.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, A., Yatsenko, E., Baranovskii, D. et al. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: the risk of senescent drift induction in secretome-based therapeutics. Military Med Res 10, 60 (2023). https://0-doi-org.brum.beds.ac.uk/10.1186/s40779-023-00498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://0-doi-org.brum.beds.ac.uk/10.1186/s40779-023-00498-0

Keywords